首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we introduce a one-dimensional continuum model for ferroelectric ceramics within a thermodynamical framework. The model consists of a free energy potential, a switching criterion, and a kinetic relation. The free energy potential is given as a function of polarization, strain, and two internal variables – remanent polarization and remanent strain. A polarization switching is described by evolutions of the two internal variables and evolution laws called kinetics are proposed based on the second law of thermodynamics. The predictions of the model are compared with experimental observations. It is suggested to model unpoled domains in the fully poled state for improved model responses.  相似文献   

2.
Nonlinear Dynamics - Hysteretic nonlinearities significantly affect the behavior of devices based on piezoelectric materials. The topic has been widely addressed in the actuation framework, as...  相似文献   

3.
A new phenomenological inelastic constitutive model for rubberlike materials is presented and its good correspondence to cyclic measurements is demonstrated for both uniaxial tension- and simple shear-tests up to large deformations. The model implies strong nonlinearities, hysteresis, the influence of the loading history and remaining deformations after unloading. Results of finite element calculations are represented to show the suitability of the constitutive model within this method for practical applications.  相似文献   

4.
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.  相似文献   

5.
In this article, materials within a crystallite are modeled by continuum particles consisting of various types of ferroelectric variants which are characterized by their mass fractions. The constitutive behavior of each type of variant is characterized by a proposed Helmholtz free energy potential. Polarization switching is modeled by continuous changes of mass fractions which are governed by a onset criterion and a kinetic relation. A finite element algorithm is developed using the virtual work principle. The simulated results on the rate dependence in the polarization and strain responses to applied alternating electric field of different frequencies are in qualitative consistence with experimental observations. The rate-dependent behavior is explained in terms of changes of mass fractions of the variants that polarization switching involves, in response to the loading programs of different loading rates.  相似文献   

6.
In this paper, a general form for multi-axial constitutive laws for ferroelectric ceramics is constructed. The foundation of the theory is an assumed form for the Helmholtz free energy of the material. Switching surfaces and associated flow rules are postulated in a modified stress and electric field space such that a positive dissipation rate during switching is guaranteed. The resulting tangent moduli relating increments of stress and electric field to increments of strain and electric displacement are symmetric since changes in the linear elastic, dielectric and piezoelectric properties of the material are included in the switching surface. Finally, parameters of the model are determined for two uncoupled cases, namely non-remanent straining ferroelectrics and purely ferroelastic switching, and then for the fully coupled ferroelectric case.  相似文献   

7.
A constitutive model that can be used to predict thermo-electro-mechanical linear and nonlinear behavior of ferroelectric polycrystals near room temperature is proposed. A ferroelectric polycrystal is modeled by an agglomerate of 210 single crystallites that are distributed regularly over all directions. A variant in a single crystallite is characterized by a Gibbs free energy function whose coefficients have linear dependency on temperature. A dissipation inequality for domain switching is derived from the restriction of the second law of thermodynamics. Domain switching process is governed by a viscoplastic switching law with temperature-dependent switching parameters. The responses of the proposed model to electric field and mechanical stress loading at room and elevated temperatures are calculated and compared qualitatively with experimental observations available in literature.  相似文献   

8.
This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from the pure transformation mechanism. Numerical tests show the ability to reproduce main features of shape memory alloys in proportional loadings and also to improve prediction capabilities under non-proportional loadings, as proven by the comparison with several experimental results available in the literature.  相似文献   

9.
An isoparametric 3D electromechanical hexahedral finite element integrating a 3D phenomenological ferroelectric and ferroelastic constitutive law for domain switching effects is proposed. The model presents two internal variables which are the ferroelectric polarization (related to the electric field) and the ferroelastic strain (related to the mechanical stress). An implicit integration technique of the constitutive equations based on the return-mapping algorithm is developed. The mechanical strain tensor and the electric field vector are expressed in a curvilinear coordinate system in order to handle the transverse isotropy behavior of ferroelectric ceramics. The hexahedral finite element is implemented into the commercial finite element code Abaqus® via the subroutine user element. Some linear (piezoelectric) and non linear (ferroelectric and ferroelastic) benchmarks are considered as validation tests.  相似文献   

10.
11.
A mechanism-based constitutive model is presented for the inelastic deformation and fracture of ceramics. The model comprises four essential features: (i) micro-crack extension rates based on stress-intensity calculations and a crack growth law, (ii) the effect of the crack density on the stiffness, inclusive of crack closure, (iii) plasticity at high confining pressures, and (iv) initial flaws that scale with the grain size. Predictions of stress/strain responses for a range of stress states demonstrate that the model captures the transition from deformation by micro-cracking at low triaxiality to plastic slip at high triaxialities. Moreover, natural outcomes of the model include dilation (or bulking) upon micro-cracking, as well as the increase in the shear strength of the damaged ceramic with increasing triaxiality. Cavity expansion calculations are used to extract some key physics relevant to penetration. Three domains have been identified: (i) quasi-static, where the ceramic fails due to the outward propagation of a compression damage front, (ii) intermediate velocity, where an outward propagating compression damage front is accompanied by an inward propagating tensile (or spallation) front caused by the reflection of the elastic wave from the outer surface and (iii) high velocity, wherein plastic deformation initiates at the inner surface of the shell followed by spalling within a tensile damage front when the elastic wave reflects from the outer surface. Consistent with experimental observations, the cavity pressure is sensitive to the grain size under quasi-static conditions but relatively insensitive under dynamic loadings.  相似文献   

12.
13.
In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term “hybrid” refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.  相似文献   

14.
Most devices based on shape memory alloys experience both finite deformations and non-proportional loading conditions in engineering applications. This motivates the development of constitutive models considering finite strain as well as martensite variant reorientation. To this end, in the present article, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite strain phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Panico and Brinson (J Mech Phys Solids 55:2491–2511, 2007). In the finite strain constitutive model derivation, a multiplicative decomposition of the deformation gradient into elastic and inelastic parts, together with an additive decomposition of the inelastic strain rate tensor into transformation and reorientation parts is adopted. Moreover, it is shown that, when linearized, the proposed model reduces exactly to the original small strain model.  相似文献   

15.
A thermodynamically consistent phenomenological model for the simulation of the macroscopic behavior of ferroelectric polycrystalline ceramics is presented. It is based on the choice of microscopically motivated internal state variables, which describe the texture and the polarization state of the polycrystal. Saturation states are defined for the internal state variables. The linear material behavior is modelled by a transversely isotropic piezoelectric constitutive law, where the anisotropy is history dependent. For non-linear irreversible processes, a switching function and associated evolution rules are applied, satisfying the principle of maximum ferroelectric dissipation. Saturation is modelled by the use of energy-barrier functions in the electric enthalpy density function. Numerical examples demonstrate the capability of the proposed model, to predict the typical experimental results.  相似文献   

16.
17.
刘峰 《固体力学学报》2010,31(2):193-197
大量的实验已经证实电畴翻转是铁电材料非线性和迟滞性本构曲线的根本原因。研究者已经对铁电陶瓷的微观电畴翻转行为进行了大量详细的研究。针对描述电畴成核的物理实验结果和经典的成核率实验数据,为了建立电畴翻转体积分数的演化方程提出了反应微观电畴翻转的成核率模型。针对铁电试样电畴随机分布的情况,应用该模型对铁电陶瓷的非线性本构行为进行了研究。理论结果与实验数据的比较表明,模型能较好的描述铁电材料的非线性本构行为。同时模型所揭示的微观反转的物理本质可进一步的指导宏观唯象模型的改进。  相似文献   

18.
A unified framework of constructing phenomenological constitutive models for a broad class of elasto-plastic materials exhibiting either plastical incompressibility (e.g., grey cast iron) or plastical compressibility (e.g., metal foams) is proposed. The constitutive framework also enables the different yielding behaviours under tension and compression as well as differential hardening along different loading paths to be accounted for in a relatively simple manner. The resulting plasticity model does not require the difficult task of experimentally probing the initial yield surface and its subsequent evolution; it is completely determined from a set of as few as two distinctive stress–strain curves measured along the characteristic loading paths for isotropic materials. The predicted yielding behaviours for grey cast iron and metal foams compare favourably with those measured.  相似文献   

19.
A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper. Based on the thermodynamics, micromechanics and microscalet→m transformation mechanism analysis of the TZP and PSZ ZrO2-containing ceramics, an analytic expressions of the Helmholtz and complementary free energy of the constitutive element for the case of pure dilatant transformation is derived for the first time in a self-consistent manner. By the analysis of energy dissipation in the forward and reverse transformations, the micromechanics constitutive law is derived in the framework of Hill-Rice's internal variable constitutive theory. The project is supported by the National Natural Science Foundation of China.  相似文献   

20.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号