首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity.  相似文献   

2.
3.
The paper elaborates on the statistical interpretation of a class of gradient models by resorting to both microscopic and macroscopic considerations. The microscopic stochastic representation of stress and strain fields reflects the heterogeneity inherently present in engineering materials at small scales. A physical argument is advanced to conjecture that stress shows small fluctuations and strong spatial correlations when compared to those of strain; then, a series expansion in the respective constitutive equations renders unimportant stress gradient terms, in contrast to strain gradient terms, which should be retained. Each higher-order strain gradient term is given a physically clear interpretation. The formulation also allows for the underlying microstrain field to be statistically non-stationary, e.g., of fractal character. The paper concludes with a comparison between surface effects predicted by gradient and stochastic formulations.  相似文献   

4.
The equations governing mechanics and electrostatics are formulated for a system in which the material deformations and electrostatic polarizations are arbitrary. A mechanical/electrostatic energy balance is formulated for this situation in terms of the electric enthalpy, in which the electric potential and the electric field are the independent variables, and charge and electric displacement, respectively, are the conjugate thermodynamic forces. This energy statement is presented in the form of a principle of virtual work (PVW), in which external virtual work is equated to internal virtual work. The resulting expression involves an internal material virtual work in which (1) material polarization is work-conjugate to increments of electric field, and (2) a combination of Cauchy stress, Maxwell stress and a product of polarization and electric field is work-conjugate to increments of strain. This PVW is valid for all material types, including those that are conservative and those that are dissipative. Such a virtual work expression is the basis for a rigorous formulation of a finite element method for problems involving the deformation and electrostatic charging of materials, including electroactive polymers and switchable ferroelectrics. The internal virtual work expression is used to develop the structure of conservative constitutive laws governing, for example, electroactive elastomers and piezoelectric materials, thereby determining the form of the Maxwell or electrostatic stress. It is shown that the Maxwell or electrostatic stress has a form fully constrained by the constitutive law and cannot be chosen independently of it. The structure of constitutive laws for dissipative materials, such as viscoelastic electroactive polymers and switchable ferroelectrics, is similarly determined, and it is shown that the Maxwell or electrostatic stress for these materials is identical to that for a material having the same conservative response when the dissipative processes in the material are shut off. The form of the internal virtual work is used further to develop the structure of dissipative constitutive laws controlled by rearrangement of material internal variables.  相似文献   

5.
This paper deals with a formulation of nonlocal and gradient plasticity with internal variables. The constitutive model complies with local internal variables which govern kinematic hardening and isotropic softening and with a nonlocal corrective internal variable defined either as the sum between a new internal variable and its spatial weighted average or as the gradient of a measure of plastic strain. The rate constitutive problem is cast in the framework provided by the convex analysis and the potential theory for monotone multivalued operators which provide the suitable tools to perform a theoretical analysis of such nonlocal and gradient problems. The validity of the maximum dissipation theorem is assessed and constitutive variational formulations of the rate model are provided. The structural rate problem for an assigned load rate is then formulated. The related variational formulation in the complete set of state variable is contributed and the methodology to derive variational formulations, with different combinations of the state variables, is explicitly provided. In particular the generalization to the present nonlocal and gradient model of the principles of Prager–Hodge, Greenberg and Capurso–Maier is presented. Finally nonlocal variational formulations provided in the literature are derived as special cases of the proposed model.  相似文献   

6.
Most devices based on shape memory alloys experience both finite deformations and non-proportional loading conditions in engineering applications. This motivates the development of constitutive models considering finite strain as well as martensite variant reorientation. To this end, in the present article, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite strain phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Panico and Brinson (J Mech Phys Solids 55:2491–2511, 2007). In the finite strain constitutive model derivation, a multiplicative decomposition of the deformation gradient into elastic and inelastic parts, together with an additive decomposition of the inelastic strain rate tensor into transformation and reorientation parts is adopted. Moreover, it is shown that, when linearized, the proposed model reduces exactly to the original small strain model.  相似文献   

7.
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.  相似文献   

8.
Constitutive equations for hot-working of metals   总被引:1,自引:0,他引:1  
Elevated temperature deformation processing - “hot-working,” is an important step during the manufacturing of most metal products. Central to any successful analysis of a hot-working process is the use of appropriate rate and temperature-dependent constitutive equations for large, interrupted inelastic deformations, which can faithfully account for strain-hardening, the restoration processes of recovery and recrystallization and strain rate and temperature history effects. In this paper we develop a set of phenomenological, internal variable type constitutive equations describing the elevated temperature deformation of metals. We use a scalar and a symmetric, traceless, second-order tensor as internal variables which, in an average sense, represent an isotropic and an anisotropic resistance to plastic flow offered by the internal state of the material. In this theory, we consider small elastic stretches but large plastic deformations (within the limits of texturing) of isotropic materials. Special cases (within the constitutive framework developed here) which should be suitable for analyzing hot-working processes are indicated.  相似文献   

9.
An analysis of the continuous symmetries of the constitutive laws of inelastic materials written within a thermodynamical framework of relaxation is performed. This framework relies on the generalization of Gibb’s relationship outside the equilibrium of a uniform system, and the use of the fluctuation theory to model the material dissipation due to its internal microstructure change [Cunat, C., 2001. The DNLR approach and relaxation phenomena. Part I – Historical account and DNLR formalism. Mech. Time-depend. Mater. 5, 39–65]. The approach leads to a viscoelastic like formulation for small deformations, and changes gradually for finite strains towards elastoviscoplasticity (with or without damage) via a dependence of characteristic times with the loading path, in a way similar to the endochronic approach developed by Valanis [Valanis, K.C., 1975. On the fundations of the endochronic theory of viscoplasticity. Arch. Mech. 27, 857–868]. The present thermodynamic framework has been previously applied to elastoviscoplastic materials under cyclic and non-proportional loadings [Dieng, L., Abdul-Latif, A., Haboussi, M., Cunat, C., 2005b. Cyclic plasticity modeling with the distribution of non-linear relaxations approach. Int. J. Plasticity 21, 353–379]. The constitutive laws split into the state laws relating intensive variables (thermodynamics forces) to extensive-like variables, and the complementary evolution laws of the internal variables associated to the dissipative mechanisms. An interpretation of a non-equilibrium thermodynamic approach of irreversible processes in terms of an extremum principle is proposed, associated to a Lagrangian functional. It is shown that one possible choice for the Lagrangian kernel is the material derivative of the internal energy density, augmented by a complementary term that accounts for the evolution laws of the internal variables. Interpreting the material behavior during the non-equilibrium evolution as the Euler–Lagrange equations of the resulting action integral, a differential condition expressing both the local and variational symmetries encapsulated into the Lagrangian formulation is formulated. It is further shown that both symmetry conditions are fully equivalent along the optimal path corresponding to the satisfaction of the constitutive laws. In terms of both practical and methodological aspects, the predictive nature of the symmetry analysis is highlighted, as a systematic tool for the exploitation of the constitutive response. Its performance and utility are exemplified by the construction of a time–temperature equivalence principle for a dry viscous polymer (PA66); the calculated shift factor is shown to well agree with the empirical shift factor given by Williams–Landel–Ferry (WLF) expression. A systematic interpretation of the calculated symmetry groups of the constitutive laws in terms of master curves for various plastic and viscoplastic materials shall be presented in a forthcoming contribution.  相似文献   

10.
From the viewpoint of irreversible thermodynamics an admissible form of rate-type constitutive equation of inelastic materials is given. The displacement gradient tensor F referred to the temporarily fixed reference frame which coincides with the Euler frame at the instant of the reference time is decomposed linearly into elastic and inelastic parts so that the procedure of formulation is simplified and clarified. The inelastic deformation rate is directly related to the internal production rate of entropy. The existence of an inelastic potential of the usual sense is not assumed, though the result can be understood to include the conventional flow theory based on an inelastic potential. An example of an elastoviscoplastic constitutive equation is given and some properties of yield surfaces are discussed.  相似文献   

11.
An improved gradient-enhanced approach for softening elasto-plasticity is proposed, which in essence is fully nonlocal, i.e. an equivalent integral nonlocal format exists. The method utilises a nonlocal field variable in its constitutive framework, but in contrast to the integral models computes this nonlocal field with a gradient formulation. This formulation is considered ‘implicit’ in the sense that it strictly incorporates the higher-order gradients of the local field variable indirectly, unlike the common (explicit) gradient approaches. Furthermore, this implicit gradient formulation constitutes an additional partial differential equation (PDE) of the Helmholtz type, which is solved in a coupled fashion with the standard equilibrium condition. Such an approach is particularly advantageous since it combines the long-range interactions of an integral (nonlocal) model with the computational efficiency of a gradient formulation. Although these implicit gradient approaches have been successfully applied within damage mechanics, e.g. for quasi-brittle materials, the first attempts were deficient for plasticity. On the basis of a thorough comparison of the gradient-enhancements for plasticity and damage this paper rephrases the problem, which leads to a formulation that overcomes most reported problems. The two-dimensional finite element implementation for geometrically linear plain strain problems is presented. One- and two-dimensional numerical examples demonstrate the ability of this method to numerically model irreversible deformations, accompanied by the intense localisation of deformation and softening up to complete failure.  相似文献   

12.
Recently it has been demonstrated that, on the basis of the separation D=De+Dp arising from the split of the stress power and two consistency criteria for objective Eulerian rate formulations, it is possible to establish a consistent Eulerian rate formulation of finite elastoplasticity in terms of the Kirchhoff stress and the stretching, without involving additional deformation-like variables labelled “elastic” or “plastic”. It has further been demonstrated that this consistent formulation leads to a simple essential structure implied by the work postulate, namely, both the normality rule for plastic flow Dp and the convexity of the yield surface in Kirchhoff stress space. Here, we attempt to place such an Eulerian formulation on the thermodynamic grounds by extending it to a general case with thermal effects, where the consistency requirements are treated in a twofold sense. First, we propose a general constitutive formulation based on the foregoing separation as well as the two consistency criteria. This is accomplished by employing the corotational logarithmic rate and by incorporating an exactly integrable Eulerian rate equation for De for thermo-elastic behaviour. Then, we study the consistency of the formulation with thermodynamic laws. Towards this goal, simple forms of restrictions are derived, and consequences are discussed. It is shown that the proposed Eulerian formulation is free in the sense of thermodynamic consistency. Namely, a Helmholtz free energy function in explicit form may be found such that the restrictions from the thermodynamic laws can be fulfilled with positive internal dissipation for arbitrary forms of constitutive functions included in the constitutive formulation. In particular, that is the case for the foregoing essential constitutive structure in the purely mechanical case. These results eventually lead to a complete, explicit constitutive theory for coupled fields of deformation, stress and temperature in thermo-elastoplastic solids at finite deformations.  相似文献   

13.
14.
To some extent, continua can no longer be considered as free of defects. Experimental observations on natural rubber revealed the existence of distributed microscopic defects which grow upon cyclic loading. However, these observations are not incorporated in the classical fatigue life predictors for rubber, i.e. the maximum principal stretch, the maximum principal stress and the strain energy. Recently, Verron et al. [Verron, E., Le Cam, J.B., Gornet, L., 2006. A multiaxial criterion for crack nucleation in rubber. Mech. Res. Commun. 33, 493–498] considered the configurational stress tensor to propose a fatigue life predictor for rubber which takes into account the presence of microscopic defects by considering that macroscopic crack nucleation can be seen as the result of the propagation of microscopic defects. For elastic materials, it predicts privileged regions of rubber parts in which macroscopic fatigue crack might appear. Here, we will address our interest to a broader context. Rubber is assumed to exhibit inelastic behavior, characterized by hysteresis, under fatigue loading conditions. The configurational mechanics-based predictor is modified to incorporate inelastic constitutive equations. Afterwards, it is used to predict fatigue life. The emphasis of the present work is laid on the prediction of the well-known fatigue life improvement in natural rubber under tension–tension cyclic loading.  相似文献   

15.
Creep and stress relaxation are known to be interrelated in linearly viscoelastic materials by an exact analytical expression. In this article, analytical interrelations are derived for nonlinearly viscoelastic materials which obey a single integral nonlinear superposition constitutive equation. The kernel is not assumed to be separable as a product of strain and time dependent parts. Superposition is fully taken into account within the single integral formulation used. Specific formulations based on power law time dependence and truncated expansions are developed. These are appropriate for weak stress and strain dependence. The interrelated constitutive formulation is applied to ligaments, in which stiffness increases with strain, stress relaxation proceeds faster than creep, and rate of creep is a function of stress and rate of relaxation is a function of strain. An interrelation was also constructed for a commercial die-cast aluminum alloy currently used in small engine applications.  相似文献   

16.
A statistical continuum mechanics formulation is presented to predict the inelastic behavior of a medium consisting of two isotropic phases. The phase distribution and morphology are represented by a two-point probability function. The isotropic behavior of the single phase medium is represented by a power law relationship between the strain rate and the resolved local shear stress. It is assumed that the elastic contribution to deformation is negligible. A Green’s function solution to the equations of stress equilibrium is used to obtain the constitutive law for the heterogeneous medium. This relationship links the local velocity gradient to the macroscopic velocity gradient and local viscoplastic modulus. The statistical continuum theory is introduced into the localization relation to obtain a closed form solution. Using a Taylor series expansion an approximate solution is obtained and compared to the Taylor’s upper-bound for the inelastic effective modulus. The model is applied for the two classical cases of spherical and unidirectional discontinuous fiber-reinforced two-phase media with varying size and orientation.  相似文献   

17.
Dielectric polymer films subjected to an electric field reduce in thickness and expand in area. A pile up configuration of such films, also known as a stacked dielectric actuator, is capable of exhibiting contractive deformations while subjected to external tensile forces. This work analyzes the capabilities of the stacked actuator according to a new microscopically motivated approach which suggests that the macroscopic response is determined by four microscopic factors—the length of the polymer chains, the local behavior of the monomers, the intensity of the local dipole and the chain-density. With the aim of enhancing the actuators performance, a specific local behavior is assumed and the influence of the remaining three quantities is studied. It is shown that the actuation can be significantly improved with appropriate micro-structural changes. Interestingly, this work demonstrates that these micro-structural alterations depend on the envisaged application.  相似文献   

18.
In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term “hybrid” refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.  相似文献   

19.
Motivated by applications in the modeling of deformations of the DNA double helix, we construct a continuum mechanics model of two elastically interacting elastic strands. The two strands are described in terms of averaged, or macroscopic, variables plus an additional small, internal or microscopic, perturbation. We call this composite structure a birod. The balance laws for the macroscopic configuration variables of the birod can be cast in the form of a classic Cosserat rod model with coupling to the internal balance laws through the constitutive relations. The internal balance laws for the microstructure variables also take a mathematical form analogous to that for a Cosserat rod, but with coupling to the macroscopic system through terms corresponding to distributed force and couple loads.  相似文献   

20.
In this paper the fundamental role of independent balance laws of material forces acting on dislocations and microdefects is shown. They enable a thermodynamically consistent formulation of dissipative deformation processes of continua with dislocation motion and defect evolution in the material space on meso- and microlevel.The balance laws of material forces together with the classical balance laws of physical forces and couples, first and second laws of thermodynamics for physical and material space and general constitutive equations are the basis to develop a thermodynamically consistent framework of nonlocal finite elastoplasticity and brittle and ductile damage.It is shown that a weakly-nonlocal formulation of the balance laws of material forces leads to gradient theories, where local theories are obtained, if all gradient contributions are assumed to be small. In this case the local balance laws of material forces together with the constitutive equations represent evolution laws of the material forces. In the classical approach of internal variables they are assumed from the outset with the result that there is a large number of different propositions in the literature.The well-known splitting test of a circular cylinder of concrete is simulated numerically, where the process of deformation in the physical space and defect and plastic evolution in the material space is represented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号