首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids.The propagation of three longitudinal waves is represented through three scalar potential functions.The lone transverse wave is presented by a vector potential function.The displacements of particles in different phases of the aggregate are defined in terms of these potential functions.It is shown that there exist three longitudinal waves and one transverse wave.The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated.For the presence of viscosity in pore-fluids,the waves refracted to the porous medium attenuate in the direction normal to the interface.The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a nonsingular system of linear algebraic equations.These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave.The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model.The conservation of the energy across the interface is verified.The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed.  相似文献   

2.
3.
A study of body waves in fractured porous media saturated by two fluids is presented. We show the existence of four compressional and one rotational waves. The first and third compressional waves are analogous to the fast and slow compressional waves in Biot's theory. The second compressional wave arises because of fractures, whereas the fourth compressional wave is associated with the pressure difference between the fluid phases in the porous blocks. The effects of fractures on the phase velocity and attenuation coefficient of body waves are numerically investigated for a fractured sandstone saturated by air and water phases. All compressional waves except the first compressional wave are diffusive-type waves, i.e., highly attenuated and do not exist at low frequencies.Now at Izmir Institute of Technology, Faculty of Engineering, Gaziosmanpasa Bulvari, No.16, Cankaya, Izmir, Turkey.  相似文献   

4.
A linear isothermal dynamic model for a porous medium saturated by two immiscible fluids is developed in the paper. In contrast to the mixture theory, phase separation is avoided by introducing one energy for the porous medium. It is an important advantage of the model based on one energy approach that it can account for the couplings between the phases. The volume fraction of each phase is characterized by the porosity of the porous medium and the saturation of the wetting phase. The mass and momentum balance equations are constructed according to the generalized mixture theory. Constitutive relations for the stress, pore pressure are derived from the free energy function. A capillary pressure relaxation model characterizing one attenuation mechanism of the two-fluid saturated porous medium is introduced under the constraint of the entropy inequality. In order to describe the momentum interaction between the fluids and the solid, a frequency independent drag force model is introduced. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be calculated by the phenomenological parameters, which are measurable. The equations of motion in the frequency domain are obtained in terms of the Fourier transformation. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for three P waves and one S wave are calculated. The influences of the capillary pressure relaxation coefficient and the saturation of the wetting phase on the velocities and attenuation coefficients for the four wave modes are discussed in the numerical examples.  相似文献   

5.
基于Biot理论和双重孔隙介质理论研究了弹性波在双重孔隙介质与流体饱和单一孔隙介质 界面的反射和透射问题,在界面上假定裂缝孔隙流体相对于固体骨架的位移为零,推导了反 射系数和透射系数的计算公式,数值讨论了反射系数和透射系数随入射角和频率的变化关 系. 同时,讨论了双重孔隙介质中3种压缩波(P-1, P-2和P-3波)和一种剪切波(S波) 的频散和衰减特性.  相似文献   

6.
Reflection and transmission of an incident plane wave at five types of possible interfaces between two dipo-lar gradient elastic solids are studied in this paper. First, the explicit expressions of monopolar tractions and dipolar trac-tions are derived from the postulated function of strain energy density. Then, the displacements, the normal derivative of displacements, monopolar tractions, and dipolar tractions are used to create the nontraditional interface conditions. There are five types of possible interfaces based on all possible combinations of the displacements and the normal derivative of displacements. These interfacial conditions with consid-eration of microstructure effects are used to determine the amplitude ratio of the reflection and transmission waves with respect to the incident wave. Further, the energy ratios of the reflection and transmission waves with respect to the incident wave are calculated. Some numerical results of the reflection and transmission coefficients are given in terms of energy flux ratio for five types of possible interfaces. The influences of the five types of possible interfaces on the energy parti-tion between the refection waves and the transmission waves are discussed, and the concept of double channels of energy transfer is first proposed to explain the different influences of five types of interfaces.  相似文献   

7.
The present study deals with reflection and transmission of plane waves between two different fluid-saturated porous half-spaces, where longitudinal and transversal waves impinge obliquely onto the interface. Amplitude ratios of various reflected and transmitted waves are obtained. Variations of amplitude ratios with the angle of incidence are depicted graphically. A particular case of reflection at the free surface of the fluid-saturated porous half-spaces is discussed.  相似文献   

8.
Scattering of elastic waves by a moving slab is considered. Two cases corresponding to strong contact and good lubrication are treated. It is shown that the motion introduces new effective compressional and shear wave velocities in the moving slab. The amplitude of the reflection and transmission coefficients are given for various angles of incidence, frequencies and velocities of motion.  相似文献   

9.
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.  相似文献   

10.
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.  相似文献   

11.
Y. C. Angel 《Wave Motion》1994,20(4):371-383
The reflection and transmission of antiplane surface waves (Love waves) by a surface-breaking crack in a layered elastic solid is investigated. The crack is normal to the free surface, and breaks into the lower half-space solid. The formulation of the problem is reduced to a singular integral equation of the Cauchy type. In this equation, the unknown function, which is the slope of the crack-face displacement, is discontinuous at the interface between the two solids. It is shown that the magnitude of the discontinuity is related to the ratio of the shear moduli. A Gaussian numerical method is used to obtain the solution of the singular integral equation. At some distance from the plane of the crack, the wave motion is the superposition of a finite number of Love-wave modes. The amplitudes of these modes are readily evaluated in terms of the slope of the crack-face displacement. Curves are presented for the reflection coefficients corresponding to the first three modes and for the transmission coefficient as functions of the dimensionless frequency.  相似文献   

12.
The mode conversions which occur during the reflection and transmission of seismic waves at the boundaries of porous media are analysed. It is shown how the energy partitioned to the various modes depends on the incident angle and on the physical properties of the fluid and solid components on each side of the boundary. The boundary conditions used here predict the occurrence of bright and dark spots as are currently observed in seismic studies of heavy oil reservoirs. They also give rise to a class of pseudo interface waves which propagate in a direction almost parallel to the surface and which become true interface waves in the limiting case where the porous media degenerate to elastic solids. When thermomechanical coupling is an important attenaution mechanism in one of the media it is also observed to have a substantial effect on the mode conversions which occur at the boundary.  相似文献   

13.
We describe steady two-dimensional flows of two immiscible fluids through an undulating porous medium of constant thickness, with impermeable or slightly permeable boundaries. Flows in the same or opposite directions are called, respectively, direct or counter flows. Three special classes of flow are determined:
  1. The pressure dominated case occurs for high direct flows and has the interface approximately a constant vertical distance from the impermeable boundaries.
  2. The gravity dominated case occurs for low direct flows and has the interface very close to the lower (upper) boundary for downward (upward) sloping boundaries except at crossovers.
  3. Counter flows require the interface to decrease in the direction of flow of the lower fluid.
Numerical examples illustrate the three classifications above. For incompressible flows the interface and pressure equations uncouple. A stability analysis shows that the direction of integration of the differential equation for the interface must be opposite to the flow direction for direct flows; for counter flows the direction of integration depends on whether the interface is above or below a critical height. Direct flows through cyclic geometries are asymptotically cyclic upstream. If the reservoir is ‘leaky’, asymptotically self-similar flows result when the (small) permeability ratio is scaled to the dynamical flow parameters.  相似文献   

14.
15.
The problem of reflection and refraction of waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures has been investigated. It is shown that due to incidence of P-wave or SV-wave at the interface, the waves are reflected and refracted. The amplitude ratios of these various reflected and refracted waves have been computed numerically, and graphical representation of their variations is made with the angle of incidence. Effect of microrotation on these amplitude ratios has been shown graphically. Some particular cases of interest have also been discussed.  相似文献   

16.
The problem of nonlinear instability of interfacial waves between two immiscible conducting cylindrical fluids of a weak Oldroyd 3-constant kind is studied. The system is assumed to be influenced by an axial magnetic field, where the effect of surface tension is taken into account. The analysis, based on the method of multiple scale in both space and time, includes the linear as well as the nonlinear effects. This scheme leads to imposing of two levels of the solvability conditions, which are used to construct like-nonlinear Schr6dinger equations (1-NLS) with complex coefficients. These equations generally describe the competition between nonlinearity and dispersion. The stability criteria are theoret- ically discussed and thereby stability diagrams are obtained for different sets of physical parameters. Proceeding to the nonlinear step of the problem, the results show the appearance of dual role of some physical parameters. Moreover, these effects depend on the wave kind, short or long, except for the ordinary viscosity parameter. The effect of the field on the system stability depends on the existence of viscosity and differs in the linear case of the problem from the nonlinear one. There is an obvious difference between the effect of the three Oldroyd constants on the system stability. New instability regions in the parameter space, which appear due to nonlinear effects, are shown.  相似文献   

17.
The reflection and transmission of the thermo-elastic coupled waves at an interface of two different couple stress elastic solids are studied in this paper. Based on the Green-Lindsay theory, the governing equations and the constitutive equations are derived. Different from the classic elastic solid, the interface conditions include the surface couple, the rotation angle, the heat flux and the temperature change. The interface conditions are used to obtain the linear algebraic equations set from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the normal energy flux conservation is used to validate the numerical results. At last, the influences of two characteristic relaxation times and the five kinds of thermally and micromechanically interface conditions are discussed based on the numerical results. It is found that the thermal wave effects affect only the longitudinal wave while the couple stress effects affect only the transverse waves. The thermo-elastic coupling makes the longitudinal wave and the thermal wave not only dispersive but also attenuated.  相似文献   

18.
This work concerns the behavior of a binary mixture of a fluid and an isotropic elastic solid in static equilibrium. The displacements are assumed to be small. Thus, the governing partial differential equations are linear. The physical model is sufficiently general to allow for a nonconstant fluid pressure when the mixture is in static equilibrium. The model is applied to the problem of an arbitrary pressure distribution on an isothermal half-space. Among the results of this calculation is an explicit formula for the surface porosity. This parameter gives the fraction of the applied pressure transmitted to the fluid.
Zusammenfassung Diese Arbeit behandelt das Verhalten einer binären Mischung eines Flüssigkeit und eines isotropen elastischen Festkorgers im statischen Gleichgewicht. Deformationen sind als klein angenommen. Die beschreibenden partiellen Differentialgleichungen sind dadurch linear. Das physikalische Modell ist allgemein genügend um einen nichtkonstanten Druck zuzulassen, wenn die Mischung im statischen Gleichgewicht ist. Das Modell wird auf das Problem einer willkürlichen druckverteilung auf dem isothermen halbraum angewandt. Unter den Ergebnissen dieser Berechnung ist eine explizite Formel für die Oberflächen porosität. Dieser Parameter gibt den Bruchteil des ausgeübten Druckes an, der auf die Flüssigkeit übertragen wird.


Presently employed at Johnson Space Center National Aeronautics and Space Administration Houston, Texas.  相似文献   

19.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

20.
An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman–Thigpen–Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of “low frequency” underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g., seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号