首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coalescence of dispersed micrometer-scale droplets is an essential step toward the separation of emulsions. The thin film between droplets must form, drain, and rupture for coalescence to occur. In surfactant-stabilized emulsions, the film drainage and droplet coalescence processes are known to be hindered because of reduced interfacial mobility. However, a clear correlation between this mobility and the underlying surfactant transport and interfacial response to shear and dilatational deformations is undercharacterized. For microscale droplets, the effect of surfactant transport to the interface and along the interface is often difficult to isolate from other bulk effects on emulsion stability. In this work, we review surfactant-mitigated coalescence in both macroscale and microscale experiments, highlighting the importance of interfacial curvature and length scales when establishing a correlation between coalescence theory and film mobility.  相似文献   

2.
We use dissipative particle dynamics (DPD) and molecular models to simulate interacting oil/water/surfactant interfaces. The system comprises sections of two emulsion droplets separated by a film. The film is in equilibrium with a continuous phase, in analogy with the surface force apparatus. This is achieved by combining DPD with a Monte Carlo scheme to simulate a muVT ensemble. The setup enables the computation of surface forces as a function of the distance between the two interfaces, as well as the detection of film rupture. We studied monolayers of nonionic model surfactants at different densities and compared oil-water-oil and water-oil-water emulsion films. Between surfactant monolayers facing each other tails-on (water-oil-water films), we observed repulsive forces due to the steric interaction between overlapping hydrophobic tails. The repulsion increases with surfactant density. Conversely, no such repulsion is observed between surfactant monolayers facing each other heads-on. Instead, the film ruptures, the monolayers merge, and a channel forms between the two droplet phases. Film rupture can also be induced in the water-oil-water films by forcing the interfaces together. The separation at rupture increases for oil-water-oil films and decreases for water-oil-water films when the surfactant density increases. The results are in qualitative agreement with existing theories of emulsion stability in creams, in particular with the channel nucleation theory based on the natural curvature of surfactants.  相似文献   

3.
The objective of this study was to investigate the significance of inner and outer phase pressure, as well as interfacial film strength on W/O/W multiple emulsion stability using microscopy and long-term stability tests. It was observed that immediately upon applying a coverslip to samples the multiple droplets deformed and there was coalescence of the inner aqueous droplets. Under certain conditions (such as lipophilic surfactant concentration and internal phase osmotic pressure) the destabilized multiple emulsions formed unique metastable structures that had a "dimpled" appearance. The formation of these metastable structures correlated with the real-time instability of the W/O/W multiple emulsions investigated. Multiple emulsion stability also correlated with the interfacial film strength (measured by interfacial elasticity) of the hydrophobic surfactant at the mineral oil/external continuous aqueous phase interface. The formation of the metastable dimpled structures and the long-term stability of the multiple emulsions were dependent on the osmotic pressure of the inner droplets and the Laplace curvature pressure as described by the Walstra Equation (P. Walstra, "Encyclopedia of Emulsion Technology" (P. Becher, Ed.), Vol. 4. Dekker, New York, 1996). It appears that the effect of coverslip pressure on multiple emulsions may be useful as an accelerated stability testing method or for initial formulation screening.  相似文献   

4.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

5.
We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.  相似文献   

6.
Many industrial applications of oil-in-water emulsions involve salts containing ions of different valence. The properties of the oil-water interface (e.g., interfacial tension, zeta potential and interfacial shear viscosity) are strongly influenced by the presence of these salts. This work investigates the role of NaCl, CaCl2 and AlCl3 on these properties of the hexane-water interface in presence of a cationic surfactant, viz., hexadecyltrimethylammonium bromide. Addition of salt enhanced the adsorption of surfactant molecules at the hexane-water interface, which increased the interfacial charge density, and consequently, the zeta potential. Interfacial shear viscosity significantly decreased in the presence of salt. The effectiveness of salt at a given concentration was in the sequence: AlCl3 > CaCl2 > NaCl. The hexane-in-water emulsions coarsened with time due to the coalescence of hexane droplets. The increase in droplet size with time was analyzed by a model based on the frequency of rupture of the thin aqueous film. The rate constants for coalescence were determined. The rate of coalescence increased in presence of salt.   相似文献   

7.
《Colloids and Surfaces》1988,29(1):29-51
The stability of water-in-crude oil emulsions when subjected to high voltage electric fields depends on the nature of the crude oil and the presence of chemical additives. Optical microscopy, conductivity and coalescence measurements have revealed two distinct types of behaviour, designated type I and type II. These are shown to be related to the crude oil/water interfacial rheological properties. For incompressible crude oil/water films, droplet—droplet coalescence is hindered and chains of water droplets are established. These increase the electrical conductivity of the emulsion (type I behaviour). On the other hand, efficient droplet—droplet coalescence accompanied by minimal conduction occurs in electric fields if the interfacial film is compressible (type II).  相似文献   

8.
A method has been developed for attaching oil (tetradecane) droplets to the end of an atomic force microscopy (AFM) cantilever and for immobilizing droplets on a glass substrate. This approach has permitted the monitoring of droplet-droplet interactions in aqueous solution as a function of interdroplet separation. Coating the droplet surfaces with added proteins or surfactants has allowed the production of model emulsions. We demonstrate that AFM measurements of droplet deformability are sensitive to interfacial rheology by modifying the interfacial film on a pair of droplets in situ. For droplets coated with the anionic surfactant sodium dodecyl sulfate, screening of the double layer has been found to facilitate coalescence. Direct imaging of the droplets has revealed the presence of regularly spaced concentric rings on the droplet surfaces. Careful experimental studies suggest that these structures may be imaging artifacts and are not perturbations of the droplet surface determined by the composition of the interface.  相似文献   

9.
A variety of experimental approaches has been used for companson of the stabilizing effect with respect to droplets coalescence caused by the interfacial adsorption layers (IAL) of a nunber of hydrocarbon and fluorocarbon surfactants at the boundary between their aqueous solutions and various non-polar hydrocarbon and fluorocarbon liquids: (I) compression of two individual droplets in surfactant solution up to their coalescence and consequent tension and rupture of a newly formed drop; (II) evaluation of the free energy of interaction between non-polar surfaces by measuring the contact rupture force for smooth spherical particles; (III) rheological study of IAL by torque pendulum method; (IV) SEM observation of the IAL morphology; (V) study of the stability with respect to the Ostwald ripening. These observations reveal the predominant role of the lyophilic structure-mechanical barrier formed by the IAL as a factor of strong stabilization with respect to coalescence and particular dependence of the mechanical strength of such layer on the nature of the non-polar liquid and on the interaction between this liquid phase and hydrophobic parts of the surfactant molecules.  相似文献   

10.
We used soft microgels made of poly(N-isopropylacrylamide) (pNIPAM) of variable cross-linking degrees and the same colloidal size to stabilize oil-in-water Pickering emulsions. The extent of droplet flocculation increased and the resistance of the emulsions to mechanical stresses decreased as the cross-linking density was augmented. Large flat films were separating the droplets, and we could measure the adhesion angle at the junction with the free interfaces through several microscopy methods. The size of the flat films and the values of the angles were reflecting strong adhesive interactions between the interfaces as a result of microgel bridging. In parallel, cryo-SEM imaging of the thin films allowed a precise determination of their structure. The evolution of the adhesion angle and of the film structure as a function of microgels cross-linking density provided interesting insights into the impact of particle softness on film adhesiveness and emulsion stability. We exploited our main findings to propose a novel route for controlling the emulsions end-use properties (flocculation and stability). Owing to particle softness and thermal sensitivity, the interfacial coverage was a path function (it depended on the sample "history"). As a consequence, by adapting the emulsification conditions, the interfacial monolayer could be trapped in a very dense and rigid configuration, providing improved resistance to bridging flocculation and to flow-induced coalescence.  相似文献   

11.
Considering the need for low oil price, polymer flooding has been demonstrated to be vitally important for enhanced oil recovery (EOR) in the oil industry. However, polymer-stabilized emulsions form during the displacement process, causing severe challenges in oilfield surface production, including separation performance, high operation and maintenance costs, pollution of facilities, and human health and environmental threats. In this paper, the formation and rupture of visco-elastic interfacial films are described. The emulsification structure of the polymer-stabilized emulsions is emphasized, and the film thickness is both measured and calculated. Furthermore, the thinning behavior of the interfacial films is presented based on the established destabilization process with a pulsed electric field. The emulsion stability theory is in good agreement with experimental results. The concentration of back-produced polymer is responsible for the increase in the elastic modulus of the interfacial films and dominates the formation and stability of the interfacial films. The rupture mechanism of the films and their ability to overcome droplet coalescence primarily depends on the thinning characteristics of the films in polymer-stabilized emulsions. By understanding the destabilization process, an improved thinning rate can be achieved for visco-elastic interfacial films, and the rupturing rate of high-strength films can be promoted.  相似文献   

12.
This review deals with the preparation, stability, rheology and different applications of highly concentrated emulsions. These emulsions, which are known as high internal phase ratio emulsions (HIPRE), gel-emulsions, biliquid foams, etc., containing over 90% internal phase by volume, have a swollen micellar (L1 or L2) solution of nonionic or ionic surfactants as a continuous phase. These emulsions have the structure of biliquid foams and behave as gels since they present viscoelastic and plastic properties. The functional macroscopic properties of gel-emulsions are dependent on the structural parameters of the microemulsion continuous phase as well as of the interfacial properties (interfacial tension, bending modules, spontaneous curvature) of surfactant monolayers. The depletion interaction between emulsion droplets due to the non-compensated osmotic pressure of micelles is revealed as a main factor, along with surface forces, which determine the aggregative stability and the rheological properties of these emulsions. The effect of electrolyte and surfactant concentration, temperature, as well as other physicochemical parameters on the fiocculation threshold, stability, and yielding properties of highly concentrated emulsions is explained by the effect of these parameters on the critical micelle concentration (CMC) and the aggregation number of surfactants, and, consequently, on the depletion interaction. The thermodynamic theory of adhesion of fluid droplets in micellar solution and the suggested model of elasticity of gel-emulsions permit to explain the effect of mentioned physicochemical parameters on the elasticity modulus, the plastic strength and the linear deformation of these emulsions. A novel mechanism for the spontaneous formation of gel-emulsions by the phase inversion temperature (PIT) route is suggested, allows the selection of ternary systems able to yield these emulsions, and explains how the droplet size can be controlled during the PIT process. An original model for liquid film rupture is also suggested, and allows the prediction of the effect of structural parameters of micellar solutions and the interfacial properties of surfactant monolayers on the stability of gel-emulsions.  相似文献   

13.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

14.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

15.
In this paper, two ternary systems (water, Triton X-100, and octane or tetradecane) were investigated using freeze-fracture transmission electron microscopy, rheology, laser diffraction particle sizing, and pulse field gradient NMR (PFG-NMR). Oil-in-water dispersed droplet emulsions were prepared for Triton X-100 concentrations of 8-12 wt % while maintaining a surfactant-to-oil weight ratio of 1:5. The stability of the emulsions significantly increased with both the surfactant concentration and the chain length of the oil component. The PFG-NMR results could be explained as a superposition of three different types of diffusion: restricted diffusion of the oil in the droplets and free and restricted diffusion of the droplets themselves. The PFG-NMR results were correlated with the electron microscopy images and the particle-sizing data. Moreover, to gain a greater understanding of the role of the oil-surfactant interactions, in particular, the present investigations were placed in context with an earlier publication where toluene was used as the oil with the same emulsifier. The change from the aromatic oil, which is a better solvent for the surfactant, to an alkane-based oil dramatically changed the characteristics of the interfacial domain. On one hand, the concentration range for the formation of emulsions and the variety of microstructures realized were severely restricted and reduced when using the alkanes as compared with toluene. On the other hand, the interfacial film was much more stable leading to an extremely reduced rate of droplet coalescence.  相似文献   

16.
The relation between the molecular mass distribution of gelatin and its effectiveness in stabilizing emulsions of dibutyl phthalate and dodecane in water have been investigated. The molecular mass distribution was determined using gel permeation chromatography. The ability of gelatin samples to stabilize emulsions was investigated by observing the coalescence of macroscopic oil droplets in a special device. The results show that all samples with a content of more than 30 wt.-% in the low-molecular mass range are good stabilizers, whereas the stabilizing ability is diminished drastically by decreasing the low molecular mass content below 30 wt.-%. Mechanisms for the stabilization and rupture of the thin water film between the oil droplets are discussed, especially in the case of gelatin adsorption layers at the film interfaces. A model is given for the qualitative explanation of the dependence of the stabilizing ability of gelatins on the molecular mass distribution.  相似文献   

17.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

18.
In Part I, surface pressure isotherms were measured for model interfaces between a dispersed water phase and a continuous phase of asphaltenes, toluene, and heptane. Here, the coalescence rate of model emulsions prepared from the same components is determined from measured drop size distributions at 23 degrees C. A correlation is found between the initial coalescence rate and the interfacial compressibility. It is shown that the change in coalescence rate as the emulsion ages and coalesces can be predicted from surface pressure isotherm data also obtained at 23 degrees C. The stability of the emulsions was further assessed in terms of free water resolved after a treatment of heating at 60 degrees C and centrifugation. The emulsions were aged up to 24 h prior to treatment. The free water resolution appears to correlate to the "capacity for coalescence" of the interfacial film; that is, to the product of the initial film compressibility and (1-CR), where CR is the film ratio at which the film crumples.  相似文献   

19.
Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small‐angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well‐hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients.  相似文献   

20.
《Colloids and Surfaces》1988,29(1):53-69
The rupture of the thin films separating emulsion droplets has long been considered to be triggered by the long-range, attractive van der Waals forces; however, this study conducted in a shearfield coalescer shows that systems containing surfactant may, in some cases, yield trends contrary to predictions based on this hypothesis. These trends can be understood in terms of a new mechanism leading to film rupture which is called here percolation-enhanced coalescence.Those regimes in which this new mechanism dominates can be determined based on simple equilibrium phase behavior studies of the surfactant, oil, and water mixtures using the percolation model proposed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号