首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double ionization of methane has been accomplished using strong optical fields that are generated using moderately intense lasers, and by strong fields that are induced by fast-moving, highly charged ions. In the former case laser intensities in the range 10(14) W cm(-2) generate fields whose durations are of 35 ps and 36 fs while in the latter case equivalent fields last for only 200-300 as. The dynamics of the field-ionized electrons are different in the two temporal regimes, fast (picoseconds), and ultrafast (few tens of femtoseconds and subfemtoseconds). Our experiments show that nonadiabatic effects come into play in the ultrafast regime; we directly monitor such effects by measuring the kinetic energy that is released when a specific bond in the doubly charged methane molecular ion breaks.  相似文献   

2.
Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH(2)Br(2) induced by 800 nm strong-field irradiation. At moderate laser peak intensities (2.0 x 10(14) Wcm(2)), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ((2)P(32)) and Br(*) ((2)P(12)) atoms together with the CH(2)Br(+) fragment ion. The measured rise times for Br and Br(*) are 130+/-22 fs and 74+/-10 fs, respectively. The atomic bromine quantum state distribution shows that the BrBr(*) population ratio is 8.1+/-3.8 and that the Br (2)P(32) state is not aligned. The observed product distribution and the time scales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. At higher laser peak intensities (6.2 x 10(14) Wcm(2)), CH(2)Br(2) (+) undergoes sequential ionization to form the metastable CH(2)Br(2) (2+) dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics.  相似文献   

3.
We interpret a molecular fragmentation experiment using shaped, ultrafast laser pulses in terms of enhanced molecular ionization during dissociation. A closed-loop learning control experiment was performed to maximize the CF3+CH3+ production ratio in the dissociative ionization of CH3COCF3. Using ab inito molecular structure calculations and quasistatic molecular ionization calculations along with data from pump-probe experiments, we identify the primary control mechanism which is quite general and should be applicable to a broad class of molecules.  相似文献   

4.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

5.
Ethanol molecules were irradiated with a pair of temporally overlapping ultrashort intense laser pulses (10(13)-10(14) Wcm(2)) with different colors of 400 and 800 nm, and the dissociative ionization processes have been investigated. The yield ratio of the C-O bond breaking with respect to the C-C bond breaking was varied in the range of 0.17-0.53 sensitively depending on the delay time between the two laser pulses, and the absolute value of the yield of the C-O bond breaking was found to be increased largely when the Fourier-transform limited 800 nm laser pulse overlaps the stretched 400 nm laser pulse, demonstrating an advantage of the two-color intense laser fields in controlling chemical bond breaking processes.  相似文献   

6.
We present a short account of the recent progress in the study of a novel strong-field phenomenon recently uncovered: atoms and molecules may be stabilized by intense laser fields. The laser-induced atomic and molecular stabilization arises from quite different origins. We present a complex-scaling Fourier-grid Hamiltonian method for the discretization and solutior of the Schrödinger equation within the non-Hermitian Floquet Hamiltonian formalism. The method provides a simple, yet accurate and highly efficient, new technique for the determination of the complex quasienergies (ERT ?Γ/2) of atoms and molecules. The real parts, ERT provide the a.c. Stark shifts, and the imaginary parts, Γ, give rise to multiphoton ionization rates of atoms or multiphoton dissociation rates of molecules. The method is applied to the studies of (i) stabilization and ionization suppression of negative ions in high-frequency superintense laser fields; (ii) laser-induced molecular stabilization and chemical bond hardening in strong laser fields.  相似文献   

7.
Clusters exhibit an enhancement in ionization rates under intense, ultrafast laser pulses compared to their molecular/atomic counterparts. Studies of ionization enhancement of weakly bound molecules to clusters have not been previously characterized and quantified. We demonstrate that weakly bound ClO to (H(2)O)(n) (n = 1-12) clusters and weakly bound HCl to (H(2)O)(n) (n = 1-12) clusters produce high atomic charge states of chlorine via Coulomb explosion. Density functional theory (DFT) was used to qualitatively compare the interaction energy of ClO with respect to the number of water molecules as well as HCl with respect to the number of water molecules. The chlorine ion signal intensity for each atomic charge state was observed to be dependent on the molecule-cluster bond strength. The observed ionization enhancement was quantified using semiclassical tunneling theory, and it was found that the Cl(3+-5+) and O(2+) charge states are enhanced in ionization. Possible mechanisms of ionization enhancement are explored for weakly bound chlorine species.  相似文献   

8.
Selected aspects of kinetic rate equations are used as a framework for the modelling of molecular multiphoton ionization. Expressions are obtained for the ion yield where one and two intermediate resonances are present and the effects of saturation due to laser beam spatial and temporal structure are shown to be important in many molecular multiphoton experiments. A comparison is made between ionization and fluorescence yields and their spatial structure, following two-photon excitation, under identical experimental conditions. Radiationless processes are shown to be important in determining the ionization yield, which leads to the apparent selectivity of molecular multiphoton ionization experiments toward Rydberg states.  相似文献   

9.
We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time‐resolved femtosecond laser spectroscopy in an ion trap. This pump‐probe “fragmentation action spectroscopy” gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas‐phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation.  相似文献   

10.
The authors examine the role of dynamic resonances in laser driven molecular fragmentation. The yields of molecular fragments can undergo dramatic changes as an impulsively excited dissociative wave packet passes through a dynamic resonance. The authors compare three different kinds of dynamic resonances in a series of molecular families and highlight the possibility of characterizing the dissociative wave function as it crosses the resonance location.  相似文献   

11.
We perform an experimental study on high-order harmonic generation (HHG) of aligned acetylene molecules induced by a 35-fs 800-nm strong laser field, by using a home-built HHG spectrometer. It is observed that the molecular HHG probability declines with increasing the laser ellipticity, which is in consistence with the deduction from the well-known tunneling-plus-rescattering scenario. By introducing a weak femtosecond laser pulse to nonadiabatically align the molecules, we investigated the molecular orbital effect on the HHG in both linearly and elliptically polarized driving laser fields. The results show that the harmonic intensity is maximum for the molecular axis aligned perpendicularly to the laser electric field. It indicates that both the highest occupied molecular orbitals (HOMO) and HOMO-1 contribute to the strong-field HHG of acetylene molecules. Our study should pave the way for understanding the interaction of molecules with ultrafast strong laser fields.  相似文献   

12.
The photoionization and dissociative ionization of molecular aggregates using synchrotron radiation is reported. The main objective of the review is to consider the intracluster relaxation processes after ionization. For hydrogen-bonded systems proton transfer is dominant. For small clusters (n<4) appearance potentials, ionization potentials, absolute proton affinities, proton solvation energies and intermolecular bond energies in the ionic clusters are deduced. For van der Waals aggregates proton transfer can also be used to characterize the intermolecular bond in the ionic cluster. Aggregates of CH4, SiH4, CH3F show proton transfer in contrast to simple aromatic compounds, which reveal no proton transfer. From the fragmentation pattern and appearance potentials relaxation by intracluster ion molecule reactions is discussed. In heterogeneous clusters intracluster Penning ionization is observed. The shift of the charge transfer resonances depends on the π-electron density in the aromatic system. The width and spectral position of these resonances are influenced by the cluster size.  相似文献   

13.
Quadruply charged, neon-like silicon and helium-like carbon were generated by the exposure of hexamethyldisilane to intense femtosecond laser pulses. Dissociation of the silicon-silicon bond, the formation of highly charged silicons, as well as the saturation intensity of their formation were studied by mass spectroscopy. The production of these ions in high abundance, but also with lower laser intensity than theoretically expected for the element, was accomplished by using organosilicon compounds. Multiply charged silicon was generated at low laser intensity because stripping electrons from organosilicon compounds is much easier than from pure silicon due to the loose binding of electrons belonging to molecular orbitals. Femtosecond laser ionization is a valuable methodology for producing highly charged ions in high abundance and is useful in many fields of interest.  相似文献   

14.
Combining our generalized Keldysh theory [Sov. Phys. JETP 20, 1307 (1965)] with the molecular orbital theory, the authors theoretically study tunneling ionizations of neutral benzene in intense linearly polarized Ti:sapphire laser fields (800 nm). They consider the ionizations from the highest occupied molecular orbitals (HOMOs) of the ground electronic state. The double degeneracy of the HOMOs is properly taken into account. In the theory, molecular ionizations consist of the individual ionizations from each atom and the quantum interferences between them. The theory reproduces the experimental data well. The authors also show that the polarization dependence of the ionization rates is strongly influenced by the quantum interferences.  相似文献   

15.
The authors investigated Coulomb explosions of ethynylbenzenes under intense femtosecond laser fields. Deuteration on the edge of the triple bond gave information about specific fragment emissions and the contribution of hydrogen migration. Some fragments not resulting from migration were emitted in the direction of laser polarization. These were ethynyl fragment ions (D(+), CD(+), C(2)D(+), and C(3)D(+)). Although two bonds have to be cleaved to produce C(3)D(+), the rigid character of the triple bond was maintained in the Coulomb explosion process. In contrast, fragment ions, which are formed after single or double hydrogen migration, showed isotropic emissions with distinct kinetic energies. The character of the substituents has been found to hold even under strong laser light fields where violent fragmentation took place. The ethynyl parts were emitted like bullets from the molecular frame of ethynylbenzene despite the explosion into pieces of the main body of benzene ring.  相似文献   

16.
In this paper we present a theoretical and computational study of extreme multielectron ionization (involving the stripping of all the electrons from light, first-row atoms, and the production of heavily charged ions, e.g., Xe(+q) (q< or =36) from heavy atoms) in elemental and molecular clusters of Xe(n),(D(2))(n), and (CD(4))(n) (n=55-1061) in ultraintense (intensity I=10(15)-10(19) W cm(-2)) laser fields. Single atom or molecule multielectron ionization can be adequately described by the semiclassical barrier suppression ionization (BSI) mechanism. Extreme cluster multielectron ionization is distinct from that of a single atomic or molecular species in terms of the mechanisms, the ionization level and the time scales for electron dynamics and for nuclear motion. The novel compound mechanism of cluster multielectron ionization, which applies when the cluster size (radius R(0)) considerably exceeds the barrier distance for the BSI of a single constituent, involves a sequential-parallel, inner-outer ionization. The cluster inner ionization driven by the BSI for the constituents is induced by a composite field consisting of the laser field and inner fields. The energetics and dynamics of the system consisting of high energy (< or =3 keV) electrons and of less, similar 100 keV ions in the laser field was treated by molecular dynamics simulations, which incorporate electron-electron, electron-ion, ion-ion, and charge-laser interactions. High-energy electron dynamics also incorporates relativistic effects and includes magnetic field effects. We treat inner ionization considering inner field ignition, screening and fluctuation contributions as well as small [(< or =13%)] impact ionization contributions. Subsequent to inner ionization a charged nanoplasma is contained within the cluster, whose response to the composite (laser+inner) field results in outer ionization, which can be approximately described by an entire cluster barrier suppression ionization mechanism.  相似文献   

17.
We investigate coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields in the state-resolved manner. When neutral NO molecules are partly ionized in intense laser fields (I(0) > 35 TW/cm(2)), a hole in the rotational wave packet of the remaining neutral NO is created because of the ionization rate depending on the alignment angle of the molecular axis with respect to the laser polarization direction. Rotational state distributions of NO are experimentally observed, and then the characteristic feature that the population at higher J levels is increased by the ionization can be identified. Numerical calculation for solving time-dependent rotational Schro?dinger equations including the effect of the ionization is carried out. The numerical results suggest that NO molecules aligned perpendicular to the laser polarization direction are dominantly ionized at the peak intensity of I(0) = 42 TW/cm(2), where the multiphoton ionization is preferred rather than the tunneling ionization.  相似文献   

18.
We study the behavior of Rydberg series of resonances excited by intense laser fields. Our approach is based on a semiclassical formalism for the evolution in time of the atomic states coupled by the laser. The atomic system is described by a two-channel model in a Multichannel Quantum Defect Theory approach. We calculate the total ionization and the photoelectron spectrum after a certain interaction time. We present results both for on-resonance and off-resonance excitation of the series. We employ a more or less realistic pulse shape that corresponds to a narrow Fourier bandwidth. We show that the effects of the non-resonant members of the series on the photoelectron spectra can be important and we study it both as a function of laser intensity and as a function of the interaction time. We also show that our model correctly describes the Rabi oscillations between the ground state and the excitedAI state when the field is sufficiently strong.  相似文献   

19.
用355 nm激光对脉冲分子束超声膨胀冷却的甲醇分子进行多光子电离, 飞行时间质谱仪观测到除甲醇碎片离子外的质子化甲醇团簇(CH3OH)nH+(n=1-16), 且离子的种类及相对强度与激光相对于脉冲分子束的延时无关, 取决于团簇离子内在结构的稳定性. 结合从头算密度泛函理论, 在B3LYP/6-31G(d)基组水平上优化得到了(CH3OH)n和(CH3OH)nH+(n=1-4)的稳定构型. 振动频谱分析显示, 团簇中最强的红外振动模主要来自氢键H伸缩振动的贡献. 团簇电离后发生于团簇内的质子转移反应也可能与激光电离引起的与氢键有关的振动模激发密切相关.  相似文献   

20.
Have you ever hoped to observe transition states? Chemists have long desired to monitor the deformation of molecular structures via transition states to understand the mechanisms of complicated reactions. Detailed knowledge of transition states helps find strategies to develop novel reaction schemes for introducing new functionalities to chemicals. Molecular structural changes via transition states can be observed by real-time vibrational spectroscopy using sub-5 fs laser pulses. In this paper, I report the direct observation of time-dependent frequency shifts of relevant molecular vibrational modes, which allowed for the clear visualization of ultrafast structural changes in molecules during bond breaking and bond reformation steps. Various mechanisms for photochemical reactions were clarified using sub-5 fs laser pulses. Moreover, a non-thermal vibrational excitation method for efficiently driving chemical reactions in the electronic ground state in solution with the use of broadband visible sub-5 fs laser pulses has been developed. The respective chemical reaction processes were directly observed, including transition states during not only "photochemical" but also "thermal" reactions. Time-resolved spectroscopy with a time resolution of a few femtoseconds enables observation of real-time vibrational amplitudes of complicated molecules and opens up new ways for clarifying reaction mechanisms and developing new chemical transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号