首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly accurate measurements of pressure shift and broadening parameters of acetylene absorption lines in the region 6580-6600 cm-1 have been performed by tunable diode laser spectroscopy (TDLS). For these purposes the three channel spectrometer with distributed-feedback diode laser, operated at 1.53 microm was used. The laser is generating pulses of 4-10 ms duration at a repetition frequency of 40 Hz. A temperature-stabilization system, using a thermoelectric cooling unit affords a temperature stability of the order of 10(-4)K in the temperature range from -15 to +50 degrees C. A three channels acquisition system ensured simultaneous real time recording of the sample gas absorption spectrum and of two spectral calibration signals (Fabry-Perot fringes and low-pressure reference lines). We have measured the pressure-induced self-shift and broadening coefficients for six lines of the R-branch in the nu1+nu3 rotation-vibration band of acetylene 12C2H2. The self-shift coefficients have been determined for these lines in the wide pressure region. A non-linear behavior of the pressure dependence of the shift was observed. The temperature exponent n of pressure-induced broadening and shift are reported.  相似文献   

2.
Theoretical study of the alpha-cyclodextrin dimer   总被引:1,自引:0,他引:1  
The molecular structure, stabilization energy, and thermodynamic properties of the plausible modes of the interaction for the three possible alpha-cyclodextrin (alpha-CD) dimers (head-to-head, tail-to-tail, and head-to-tail) with a water cluster were obtained using quantum chemical methods for the first time. Nine distinct spatial arrangements were investigated. The head-to-head mode of interaction with water is preferred by more than 10 kcal.mol(-1) (BLYP/6-31G(d,p)//PM3 Gibbs free energy difference value at room temperature) in relation to the next stable structure, with a water dimer structure placed inside each cavity and cyclic water tetramers surrounding each tail end. The inter alpha-CD hydrogen bonds play a major role to stabilize the dimeric structures, with no water tetramer being found between the two alpha-CD subunits for the preferred global minimum structure. Therefore, a theoretical model aimed to describe the behavior of alpha-CD dimer, or their inclusion complexes, in the aqueous media should take into account this preference for binding of the water molecules.  相似文献   

3.
The nu(5)+nu(9) spectra of ethylene, C(2)H(4), and its dimer, solvated in helium nanodroplets, have been recorded in the wavelength region near 1.6 microm. The monomer transitions show homogeneous broadening of approximately 0.5 cm(-1), which is interpreted as due to an upper state vibrational relaxation lifetime of approximately 10 ps. Nearly resonant vibrational energy transfer (nu(5)+nu(9)-->2nu(5)) is proposed as the relaxation pathway. The dimer gives a single unresolved absorption feature located 4 cm(-1) to the red of the monomer band origin. The scaling of moments of inertia upon solvation in helium is 1.18 for the monomer and >2.5 for the dimer. In terms of the adiabatic following approximation, this classifies the monomer as a fast rotor and the dimer as a slow rotor.  相似文献   

4.
A mild photochemical approach was applied to construct highly coupled metal–semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high‐pressure gases or sacrificial additives.  相似文献   

5.
Absolute room temperature (294 ± 2 K) absorption cross sections for the ?(1)A(2)-X?(1)A(1) electronic transition of formaldehyde have been measured over the spectral range 30,285-32,890 cm(-1) (304-330 nm) using ultraviolet (UV) laser absorption spectroscopy. Accurate high-resolution absorption cross sections are essential for atmospheric monitoring and understanding the photochemistry of this important atmospheric compound. Absorption cross sections were obtained at an instrumental resolution better than 0.09 cm(-1), which is slightly broader than the Doppler width of a rotational line of formaldehyde at 300 K (~0.07 cm(-1)) and so we were able to resolve all but the most closely spaced lines. Comparisons with previous data as well as with computer simulations have been made. Pressure broadening was studied for the collision partners He, O(2), N(2), and H(2)O and the resulting broadening parameters have been measured and increase with the strength of intermolecular interaction between formaldehyde and the collision partner. The pressure broadening coefficient for H(2)O is an order of magnitude larger than the coefficients for O(2) and N(2) and will contribute significantly to spectral line broadening in the lower atmosphere. Spectral data are made available as Supporting Information.  相似文献   

6.
We studied the R(0) line profile in the CH4 v4 band from room temperature to 188 K with N2 as a perturber, to 100 K with O2 as perturber, and from room temperature to 15 K using He as a perturber. The N2 and O2 measurements were performed over a total pressure range of 15-110 mbar, and for the He measurements the maximum sample pressure at 15 K was 1.10 mbar. Broadening parameters were determined, taking into account the confinement narrowing (Dicke effect), and narrowing parameters, deduced from the soft or hard collision model, are compared with the dynamic friction coefficient calculated values. We also obtained preliminary values for the temperature dependence of the N2, O2 and He line broadening parameters for this transition.  相似文献   

7.
Absolute line intensities in the nu(6) and nu(8) interacting bands of trans-HCOOH, observed near 1105.4 and 1033.5 cm(-1), respectively, and the dissociation constant of the formic acid dimer (HCOOH)(2) have been measured using Fourier transform spectroscopy at a resolution of 0.002 cm(-1). Eleven spectra of formic acid, at 296.0(5) K and pressures ranging from 14.28(25) to 314.0(24) Pa, have been recorded between 600 and 1900 cm(-1) with an absorption path length of 19.7(2) cm. 437 integrated absorption coefficients have been measured for 72 lines in the nu(6) band. Analysis of the pressure dependence yielded the dissociation constant of the formic acid dimer, K(p)=361(45) Pa, and the absolute intensity of the 72 lines of HCOOH. The accuracy of these results was carefully estimated. The absolute intensities of four lines of the weak nu(8) band were also measured. Using an appropriate theory, the integrated intensity of the nu(6) and nu(8) bands was determined to be 3.47 x 10(-17) and 4.68 x 10(-19) cm(-1)(molecule cm(-2)) respectively, at 296 K. Both the dissociation constant and integrated intensities were compared to earlier measurements.  相似文献   

8.
Vibrational spectra of trifluoramine, NF3, dissolved in liquid Ar were studied at 90 K in the concentration range between 2 x 10(-5) and 0.1 mole fraction, using Fourier transform spectroscopy. The concentration dependence of the band shapes in the region of the combination transitions nu1+nu3, nu2+nu3, and 2nu3 involving the strong nu3 mode was studied and the absorption associated with NF3 dimers was isolated. This absorption is compared with spectra of NF3 dimers calculated on the basis of resonant dipole-dipole interaction between two doubly degenerate oscillators. Spectra of pure liquid NF3 were recorded for comparison. Using the nu1+nu3 absorption band of the NF3 dimer the distance R between two NF3 molecules was determined to be R=4.5(1) A in solution in liquid Ar. This distance is compared with the separation between two NF3 molecules in liquid NF3 and with the value calculated from the pair distribution function obtained from Monte Carlo simulations.  相似文献   

9.
采用纤维素N甲基吗啉N氧化物(NMMO)水三元纺丝体系,以去离子水为芯液,自来水为凝胶浴,湿法纺制了纤维素中空膜.经自然干燥后该膜的轴向、径向都明显收缩,断面呈现均质致密结构.干膜在水中会明显溶胀,重新润湿后具有气密性.考察了加湿水温、水气压力差等因素对膜的水渗透通量的影响,并初步测试了膜对质子交换膜燃料电池(PEMFC)反应气体H2和O2的加湿性能.实验结果表明该膜透水性能较优,气体加湿效果明显,具有应用于PEMFC反应气体加湿系统的潜力.  相似文献   

10.
In this work we present a theoretical and experimental study of the acetylene-hydrogen system. A potential surface considering rigid monomers has been obtained by ab initio quantum chemistry methods. This 4-dimensional potential is further employed to compute, using the close-coupling approach and the coupled-states approximation, pressure broadening coefficients of C(2)H(2) isotropic Raman Q lines over a temperature range of 77 to 2000 K. Experimental data for the acetylene nu(2) Raman lines broadened by molecular hydrogen are obtained using stimulated Raman spectroscopy. The comparison of theoretical values with experimental data at 143 K is promising. Approximations to increase the computational efficiency are proposed.  相似文献   

11.
In a previous paper [J. Chem. Phys. 116, 7544 (2002) (Paper I)] a model, based on the energy corrected sudden approximation, was proposed for the construction of the line-mixing relaxation matrix. It was successfully tested by comparisons with measured infrared spectra of ammonia-helium mixtures. The present paper extends this preliminary study by considering mixtures of NH3 with H2 and Ar. Measurements have been made at room temperature in the regions of the nu2 and nu1 bands for pressures up to several hundred atmospheres. As in Paper I, the relaxation operator is constructed, within the impact approximation, using the ECS approximation. The data required are dynamical factors (which can be predicted from the NH3-X potential energy surface) and a scaling length (adjusted using line broadening data). Comparisons between measured and calculated absorptions demonstrate the quality of the model which satisfactory corrects for the large deviations with respect to the purely Lorentzian behavior. Line-mixing effects for NH3-Ar and NH3-H2 are qualitatively similar to those observed for NH3-He but quantitative differences exist, particularly when intra- and interbranch couplings are considered. Finally, the proposed model leads to very satisfactory results in the wings of both the purely rotational and nu2 bands of NH3 diluted in H2, opening promising perspectives for the remote sensing study of planetary atmospheres.  相似文献   

12.
Argon gas at a high pressure (~80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment.  相似文献   

13.
The pressure-induced Xe shifting and broadening coefficients for five lines of 12CH(3)D in the nu(3) band near 7.5 microm have been measured using a tunable diode-laser spectrometer. The frequency shift was determined from the simultaneous record of the Xe-broadened line and the same line of pure CH(3)D at low pressure. Comparisons are made with the results of theoretical calculations based on a semiclassical model involving the atom-atom Lennard-Jones (LJ) potential.  相似文献   

14.
It was found that, in a suitable pressure range, ethylene could increase the amount of solubilized water in reverse micelles of sodium bis-2-ethylhexylsulfosuccinate (AOT) in longer chain n-alkanes considerably, where the phase separation was induced by a micelle-micelle interaction mechanism. The microenvironments in the ethylene-stabilized reverse micelles were investigated by the UV-vis adsorption spectra using methyl orange (MO) as a probe. The maximum absorption of MO decreased with the increase of ethylene pressure at constant W0 value. Conductivity measurements demonstrated that the percolation temperature of the reverse micellar system increased considerably after compressed ethylene was added. The results of this work confirm that some small-molecule gases have the function of cosurfactants to stabilize reverse micelles.  相似文献   

15.
The absorption spectra of the hydrated electron in 1.0 to 4.0 M LiCl or LiClO4 deuterated water solutions were measured by pulse radiolysis techniques from room temperature to 300 degrees C at a constant pressure of 25 MPa. The results show that when the temperature is increased and the density is decreased, the absorption spectrum of the electron in the presence of a lithium cation is shifted to lower energies. Quantum classical molecular dynamics (QCMD) simulations of an excess electron in bulk water and in the presence of a lithium cation have been performed to compare with the experimental results. According to the QCMD simulations, the change in the shape of the spectrum is due to one of the three p-like excited states of the solvated electron destabilized by core repulsion. The study of s --> p transition energies for the three p-excited states reveals that for temperatures higher than room temperature, there is a broadening of each individual s --> p absorption band due to a less structured water solvation shell.  相似文献   

16.
Yields for H2, H(.) atom, and hydrated electron production in beta/gamma radiolysis of water have been measured from room temperature up to 400 degrees C on a 250 bar isobar, and also as a function of pressure (density) at 380 and 400 degrees C. Radiolysis was carried out using a beam of 2-3 MeV electrons from a van de Graaff accelerator, and detection was by mass spectrometer analysis of gases sparged from the irradiated water. N2O was used as a specific scavenger for hydrated electrons giving N2 as product. Ethanol-d(6) was used to scavenge H(.) atoms, giving HD as a stable product. It is found that the hydrated electron yield decreases and the H(.) atom yield increases dramatically at lower densities in supercritical water, and the overall escape yield increases. The yield of molecular H2 increases with temperature and does not tend toward zero at low density, indicating that it is formed promptly rather than in spur recombination. A minimum in both the radical and H2 yields is observed around 0.4 kg/dm(3) density in supercritical water.  相似文献   

17.
We have investigated the polarized IR spectra of the hydrogen bond system in crystals of trans-styrylacetic acid C(6)H(5)CHCHCH(2)COOH, and also in crystals of the following three deuterium isotopomers of the compound: C(6)H(5)CHCHCH(2)COOD, C(6)H(5)CHCHCD(2)COOH and C(6)H(5)CHCHCD(2)COOD. The spectra were measured at room temperature and at 77K by a transmission method. The spectral studies were preceded by determination of the X-ray crystal structure. Theoretical analysis of the results concerned linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond, at the frequency ranges of the nu(OH) and the nu(OD) bands, respectively. Basic spectral properties of the crystals can be interpreted satisfactorily in terms of the "strong-coupling" theory, when based on a hydrogen bond dimer model. This model sufficiently explained not only a two-branch structure of the nu(OH) and the nu(OD) bands, and temperature-induced evolution of the crystalline spectra, but also the linear dichroic effects observed in the band frequency ranges. A vibronic mechanism was analyzed, responsible for promotion of the symmetry-forbidden transition in the IR for the totally symmetric proton stretching vibrations in centrosymmetric hydrogen bond dimers. It was found to be of minor importance, when compared with analogous spectral properties of arylcarboxylic acid, or of cinnamic acid crystals. These effects were ascribed to a substantial weakening of electronic couplings between the hydrogen bonds of the associated carboxyl groups and the styryl radicals, associated with the separation of these groups in styrylacetic acid molecules by methylene groups in the molecules.  相似文献   

18.
Raman spectroscopy has been used to investigate ethane, propane, and SF6 interactions with an aligned multiwalled carbon nanotube (MWNT) membrane. Pressures of 7.5-9.3 atm and temperatures of 293-333 K were examined for propane and SF6, whereas slightly lower temperatures (263-293 K) and pressures (6.7-7.5 atm) were used for ethane. Red-shifting and broadening is seen for the C-C stretching vibrations of the two hydrocarbons, as well as for the A1g symmetric vibration (nu1) of SF6. These spectral features indicate that the interaction between the gas and the nanotube membrane is capable of perturbing molecular vibrations and creating red-shifted features. Control experiments done on polycrystalline graphite and a polystyrene blank indicate that this spectral behavior is unique to gases interacting with the nanotubes in the membrane.  相似文献   

19.
Dimerization of chloroaluminum (III) phthalocyanine tetrasulfonates (AIPCS) has been observed in different aqueous alcoholic solvents at room temperature by absorption and fluorescence spectroscopic methods. Both absorption and fluorescence spectral bands of the dimer are red shifted by ca 550 cm-1 from the monomer Q bands in the corresponding spectra, suggesting that the interaction energy between the two monomer subunits is very weak. The fluorescence lifetime of the dimer is longer ( ca 9.5 ns) than that of the monomer ( ca 7–8 ns). These spectral behaviors of AIPCS dimer contrast with those of transition-metallaloid phthalocyanine dimers, which usually have a nonfluorescent face-to-face stacking conformation. The dimer fluorescence is interpreted to be due to the fact that the lowest excited singlet state of the dimer is lower in energy than a charge-resonance state, based on the excitoncoupling theory applied to the face-to-face slipping conformation. The dimerization constant determined spectrometrically decreases with an increase of water content in the aqueous alcoholic solution. Propanol and ethanol have been observed to be more effective than methanol in promoting dimerization. These results indicate that a specific interaction of water with AIPCS plays an important role in the inhibition of dimerization of AIPCS.  相似文献   

20.
Fárník M  Davis S  Nesbitt DJ 《Faraday discussions》2001,(118):63-78; discussion 109-19
Structural and dynamical information on small hydrogen-bonded systems is revealed by high-resolution IR spectroscopy of HCl dimer, trimer and tetramer. In (HCl)2, four combination bands tentatively assigned to the Van der Waals stretch nu 4 and geared band nu 5 vibrations are observed. The study focuses on two unexpected results: (i) all of the observed bands are built only on the bound HCl stretch nu 2, and (ii) the bands predominantly originate from the 9-fold less populated upper tunneling level of the ground state. Model 3D quantum calculations are presented to show that both these surprising trends originate from the large amplitude tunneling dynamics in the dimer. The (HCl)3 spectra are assigned and analyzed for multiple isotopomeric contributions. The spectral fit reveals large homogeneous line broadening indicating the excited state lifetime of approximately 1.6 ns and tentatively associated with dynamics of intramolecular vibrational energy distribution (IVR) induced trimer ring opening. Finally, first high-resolution data on the HCl stretch fundamental spectrum of (HCl)4 are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号