首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了提高绿色云计算的能源利用率并降低其能耗,提出了一种基于蚁群优化算法的虚拟机迁移策略,该策略的目标是最小化云计算中心能耗的同时保证服务质量.首先,通过预设资源利用率阈值,找出低负载和过载的物理机;然后通过迁出低负载和过载服务器节点上的虚拟机,达到节能的目的;最后,根据虚拟机迁移列表,采用蚁群优化算法快速寻找虚拟机迁移最佳物理机.仿真结果表明,与其他算法相比,本文提出的迁移策略的执行时间和能耗最小.  相似文献   

2.
深入分析云计算环境下虚拟机资源调度分配的调度结构及与之对应的调度策略和算法后,结合云计算资源分配的最新研究成果和发展趋势,研究出一种基于聚类算法和蚁群算法的虚拟机资源分配算法.该算法基于Map/Reduce框架提出,着眼于如何为众多不同的用户任务分配虚拟机节点,充分考虑云计算环境中物理机的地域差异.在一个物理机区域内寻找分配虚拟机资源时引入蚁群算法,能更好地确保用户任务的按时完成,任务执行时间跨度方面满足服务等级协议(SLA).  相似文献   

3.
针对云数据中心虚拟机分配物理机时存在负载不均衡的问题,提出了一种基于蚁群优化算法的资源调度算法.对问题场景进行了分析,提出了数据中心负载不均衡度以及物理机与虚拟机之间不匹配度的概念,并给出了问题的形式化描述.在蚁群算法选择概率规则中参考了用户对虚拟机资源的需求,尽量避免对相同类型虚拟机部署在一台物理机上,同时对信息素的初始化、信息素的更新进行了改进.通过CloudSim模拟平台进行仿真实验,并与其他的分配算法进行了比较,实验结果表明:该调度算法能够快速地完成虚拟机的放置,并且使云数据中心的物理机具有较低负载不均衡度,提高了资源的利用率.  相似文献   

4.
为提高Hadoop云计算平台的性能,该文提出了一种跨层的参数优化模型.首先分析了云计算平台的工作流程,将系统参数与流程对应,并加入基础设施即服务与平台即服务层的参数,找出对Hadoop集群效率作用显著的参数,并把这些参数值作为性能参数,构建成性能参数模型,再用启发式蚁群算法搜寻性能较优的可行参数,并不断修正,找出最佳参数组合,最后整合跨层的参数来提高Hadoop云计算平台的性能.实验表明,该算法可行,性能优良.  相似文献   

5.
在虚拟机放置问题中,传统启发式方法不能完全适用于复杂的云计算环境,采用智能算法的研究又缺乏对时间开销的考虑。针对上述问题,提出一种基于Memetic算法的虚拟机放置(Memetic algorithm-based virtual machine placement MAVMP)方法。MAVMP方法针对云数据中心运营情况建立了最小化能耗、最小化运行时服务等级协议违例率(service level agreement violation time per active host, SLATAH)以及最大化资源利用率的多目标优化模型,将虚拟机按照资源请求情况进行分类,并利用该分类方法改进了Memetic算法,利用改进后的Memetic算法求解多目标优化模型,得到虚拟机放置方案。仿真实验结果表明,仿真数据中心利用MAVMP方法进行虚拟机放置后,其在能耗、资源利用率以及服务质量的评价指标上都有着良好表现。并且,MAVMP方法与已有的基于智能算法的虚拟机放置方法相比计算时间也大幅下降。  相似文献   

6.
为降低大规模数据中心的能耗,提出了一种虚拟机部署算法——三阈值节能算法(TTEA).该算法利用能耗与处理器资源利用率的线性关系,将负载过重和负载过轻主机上的虚拟机迁移到负载适度的主机上,而负载正常主机上的虚拟机不发生迁移.基于TTEA,进一步提出了4种虚拟机的选择策略,并通过实验对比选择HLGP策略作为最佳策略.仿真结果表明,与单阈值算法和双阈值算法相比,HLGP策略能有效降低数据中心的能耗,保持高的服务质量.  相似文献   

7.
由于云计算技术快速发展,为了满足日益多样化的云计算用户服务质量(QoS需求)以及提高云计算资源调度的效率,提出基于改进蚁群算法的云计算资源调度优化算法,包括建立云计算资源模型和用户QoS需求模型.为了得到更准确的结论,针对传统蚁群算法过快收敛造成的局部最优解现象,在传统的蚁群算法的基础上加入随机选择机制,时间、成本和结果有效可用性适应度因子进行了优化改良,以求得全局最优解.通过仿真实验将传统的蚁群算法、Mi n-Mi n调度算法和改进的蚁群优化算法进行比较,实验表明,改进的蚁群优化算法在调度效率、节约成本、减少任务执行时间和任务得到结果质量方面有明显的优势.  相似文献   

8.
为了提高虚拟机资源调度的利用率, 实现虚拟机资源合理调度, 提出一种基于猫群优化算法的虚拟机资源调度优化方法. 首先根据虚拟机资源调度优化目标构建数学模型; 然后综合考虑最短时间与最优负载构建猫群优化算法的适应度函数, 并通过模拟猫的日常行为实现虚拟机资源调度最优方案的寻优; 最后在CloudSim平台上对该算法的有效性进行测试. 测试结果表明, 该算法能获得更优的虚拟机资源调度方案, 保证了虚拟机资源的负载均衡, 可以满足用户需求的偏好性.  相似文献   

9.
随着云计算数据中心规模及复杂性的不断增长,其监控和管理的可扩展性问题已逐渐成为一项挑战性任务.对云计算平台中相似行为的虚拟机进行聚类处理,可提升云计算平台监控和管理的可扩展性.然而,在准确率和时效性上,现有的虚拟机聚类技术无法满足云计算平台的要求.本文提出一种基于深度学习的虚拟机分类算法,即对云计算平台中虚拟机的行为进...  相似文献   

10.
针对基础设施即服务(IaaS)模式的云计算应用系统,以减少宿主机使用数量、提高宿主机资源利用率为优化目标,研究了虚拟机集合向宿主机集合部署算法.分析了虚拟机部署基本原则,提出了扩展降序最佳适应(EBFD)算法,该算法将宿主机和虚拟机资源量化、排序,并引入初始长度的概念.对比了EBFD算法和其他装箱算法的基本性能;针对虚拟机部署,将EBFD算法和已有虚拟机部署算法进行比较,结果表明EBFD算法有较好的调度效果.  相似文献   

11.
为解决虚拟机部署过程中对虚拟机性能、资源利用率、负载均衡值等多个目标的优化问题,提出一种基于强化学习的改进部署算法.首先,用多个目标组成的多维奖励代替原来的单一奖励;然后将资源状态、优化目标及目标占比输入所提的预测器中来预测每个部署方案对应的多维奖励值,并通过反馈结果调节不同优化目标的占比以达到动态多目标优化的目的;最后,为了减少部署时间,用改进的均值聚类算法对服务器资源进行聚类加快部署.通过CloudsimPy平台对算法进行验证,结果表明本文算法可以在相同资源下完成更多的虚拟机请求且具有较高的部署成功率和较低的时延消耗.  相似文献   

12.
As a foundation component of cloud computing platforms, Virtual Machines(VMs) are confronted with numerous security threats. However, existing solutions tend to focus on solving threats in a specific state of the VM. In this paper, we propose a novel VM lifecycle security protection framework based on trusted computing to solve the security threats to VMs throughout their entire lifecycle. Specifically, a concept of the VM lifecycle is presented divided up by the different active conditions of the VM. Then, a trusted computing based security protection framework is developed, which can extend the trusted relationship from trusted platform module to the VM and protect the security and reliability of the VM throughout its lifecycle. The theoretical analysis shows that our proposed framework can provide comprehensive safety to VM in all of its states. Furthermore, experiment results demonstrate that the proposed framework is feasible and achieves a higher level of security compared with some state-of-the-art schemes.  相似文献   

13.
粒的数量和分类错误率是粒计算互相冲突的两个目标,同时最小化这两个目标是不可能的.针对此,构造了多目标优化问题,分别建立分类超盒粒数量和训练错误率两个目标,通过多目标演化算法对该多目标优化问题进行求解,从而产生一系列分类超盒粒集.随机产生初始种群,多目标演化算法通过利用演化操作和反复迭代的方法,得到供用户选取不同性能的解集.  相似文献   

14.
传统协同过滤算法中的topN推荐公式预测的用户评分误差较大,削弱了项目推荐的有效性.为此,基于改进的遗传算法对协同过滤算法进行优化.基于皮尔逊相关系数计算用户相似度,构建最近邻居集合;构建卷积神经网络预测近邻集中没有评分的项目,填充无评分项目的空白;利用改进自适应交叉算子与变异算子的遗传算法确定卷积神经网络的初始权值,降低网络预测的随机性.在Hadoop集群环境上展开云计算协同过滤测试,随着邻居用户数量的增加该算法推荐过程中平均绝对误差最低,在云计算环境下的运行时间开销最少,取得了良好的协同过滤推荐效果.  相似文献   

15.
对于云计算而言,虚拟机资源的合理高效配置具有重要意义.该文对粒子群方法进行到云计算资源配置的映射,详细地设计了3个约束条件和目标函数.目标函数中包含了资源利用率和迁移次数2个优化目标,整个虚拟机资源的配置过程设置了8个步骤.实验结果表明:同2种参照方法相比,该文所提出的基于粒子群算法的云资源配置方法完成配置后,不仅资源利用率高、迁移次数低,其迭代过程和迭代时间也令人满意.  相似文献   

16.
将遗传算法与机器学习相结合, 在分类器系统的基础上, 引入增强因子、 排挤因子、 合并因子等改进因子, 完善信度分配机制, 提出了改进的遗传机器学习方法. 并将算法应用于投资的收益与风险双目标优化模型, 数值结果表明, 改进算法能够寻求到数量更多、 分布更广的Pareto最优解, 并且具有较好的稳定性, 避免了非成熟收敛.  相似文献   

17.
基于云计算的异构平台虚拟机动态迁移策略研究   总被引:1,自引:0,他引:1  
虚拟机的迁移是云计算环境中平衡节点负载的重要手段.以往虚拟机只能在相同的虚拟机监控器下迁移,提出一种虚拟机迁移机制,使虚拟机能够在不同的架构下进行动态迁移.  相似文献   

18.
Virtualization technology has been widely used to virtualize single server into multiple servers, which not only creates an operating environment for a virtual machine-based cloud computing platform but also potentially improves its efficiency. Currently, most task scheduling-based algorithms used in cloud computing environments are slow to convergence or easily fall into a local optimum. This paper introduces a Greedy Particle Swarm Optimization(GPSO) based algorithm to solve the task scheduling problem. It uses a greedy algorithm to quickly solve the initial particle value of a particle swarm optimization algorithm derived from a virtual machine-based cloud platform. The archived experimental results show that the algorithm exhibits better performance such as a faster convergence rate, stronger local and global search capabilities, and a more balanced workload on each virtual machine. Therefore, the GPSO algorithm demonstrates improved virtual machine efficiency and resource utilization compared with the traditional particle swarm optimization algorithm.  相似文献   

19.
Apriori算法是经典的数据挖掘算法之一,它根据置信度和支持度对产生的频繁集进行选择,找出强规则.传统的Apriori算法需要产生大量的侯选集和多次数据库的扫描,存储和通信的开销巨大.云计算环境可以解决存储问题,所以针对Mapreduce的编程框架,提出一种适用于此模式的新关联规则算法,解决传统Apriori算法时间和空间上的缺点,提高挖掘效率.  相似文献   

20.
为保持所求得的多目标优化问题Pareto最优解的多样性,文章提出了一种新的蚁群算法。选择策略采用多信息素权重,信息素更新结合了局部信息素更新与全局信息素更新。其中,全局信息素更新采用了两个最好解。此外,通过在外部设置外部集来存储Pareto解,并将改进的算法应用在双目标TSP上。最后进行了仿真实验,结果表明新方法比NSGA-II和SPEA2更有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号