首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total Synthesis of Natural α-Tocopherol A short and efficient route to optically pure (+)-(3 R, 7 R)-trimethyldodecanol ( 14 ) is demonstrated, 14 serving as side chain unit in the preparation of natural vitamin E. The synthesis of 14 is based on the concept of using a single optically active C5-synthon of suitable configuration and functionalization to introduce both asymmetric centres in 14 . (?)-(S)-3-Methyl-γ-butyrolacton ( 1 ) and ethyl (?)-(S)-4-bromo-3-methylbutyrate ( 2 ), respectively, is used in a sequence of either two Grignard C,C-coupling reactions 5 → 8 and 12 → 13 or two Wittig reactions 17a → 18 and 20 → 21 to achieve this goal. 14 is converted to (2 R, 4′R, 8′R)-α-tocopherol (= vitamin E) by coupling with a chroman unit in known manner. Optical purity of products and intermediates is established.  相似文献   

2.
Total Synthesis of Naturally Occurring α-Tocopherol. Asymmetric Alkylation and Asymmetric Epoxidation as Means to Introduce (R)-Configuration at C(2) of the Chroman Moiety Based on the reductive, stereospecific ring closure of (2R,4′R,8′R)-α-Tocophcrylquinone′ or corresponding analogues with a short, functionalized side chain ( B , Scheme 1) to 1 resp. the chroman system of 1 (C), two different approaches for the introduction of the required tertiary methyl-substituted alcohol structure in the side chain of the aromatic precursors ( A , Scheme 1) were developed. The first approach uses asymmetric alkylation in three different versions featuring (a) diastereoselective steering with chiral auxiliaries I-IV (Scheme 2) attached as esters to a-keto acids, (b) intermediate transfer of chirality in an ester enolate (from 18 , Scheme 4) derived from an optically active α-hydroxy acid, (c) enantioselective alkylation of phytenal ( 20 ) and subsequent ring closure with chirality transfer (Schemes 5–7). The second approach is based on the asymmetric epoxidation of β-metallylalcohol (Sharpless epoxidation), the corresponding epoxyalcohol being converted in situ to the (S)-or (R)-chlorodiol (S)-and (R)- 29 , respectively, for isolation (Schemes 8 and 9). Nucleophilic epoxide opening with a (3R 7R)-3,7,11-trimethyldodecyl (C15**) and an ArCH2 unit in appropriate sequence is used to assemble the C-framework of the target molecule via corresponding epoxide intermediates from either chlorodiol. Combined with the use of the methoxymethyl-ether function for protection of the hydroquinone system, the epoxide approach provides a short route to 1 (Scheme 10).  相似文献   

3.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

4.
Synthesis of (+)-(5S, 6S)-Azafrin Methyl Ester; Absolute Configuration of Aeginetic Acid and of Further Vicinal Apocarotenediols We describe the synthesis of a series of optically active vicinal apo-β-carotenediols. Thus, starting from (+)-(5S, 6S)-5,6-dihydroxy-5,6-dihydro-β-ionone ( 2 ) we have prepared the (Z/E)-isomeric (+)-C15-esters 7 and 8 , the (+)-retinoic derivatives 14 , 15 , 18 , 19 and (+)-methyl azafrinate ( 22 ), the enantiomer of the naturally occur-ring compound (s. Scheme 1). Our synthesis also establishes the absolute configura-tion of aeginetic acid ( 24 ), aeginetoside ( 25 ) and aeginetin ( 26 ), compounds isolated from the root parasite Aeginetia indica by Indian and Japanese workers (s. Scheme 2). The presented synthesis of optically active methyl azafrinate confirms our previous assignment [14] of the absolute configuration of azafrin ( 1a ), which was based on degradative evidence.  相似文献   

5.
Optically Active C5-Synthons for the Synthesis of Naturally Occurring Terpenes The optically active synthons (S)- 22 , (R)- 23 , (R)- 25 and (R)- 26 were prepared from L -serine. Furthermore the tertiary alcohol 6 was synthesized from L -serine (→(S)- 6 ) and D -mannitol (→(R)- 6 ). These compounds are suitable for the synthesis of optically active natural products.  相似文献   

6.
C45- and C50-Carotenoids: Synthesis of an Optically Active Cyclic C20-Building Block and of Decaprenoxanthin ( = (2R, 6R, 2′R, 6′R)-2,2′-Bis(4-hydroxy-3-methylbut-2-enyl)-?, ?-carotene) The synthesis of the optically active cyclic C20-building block (R, R) -15 and of the optically active C50-carotenoid (2R, 6R, 2′R, 6′R)-decaprenoxanthin ( 1 ) starting from (-)-β-pinene ((S)- 2 ) is reported.  相似文献   

7.
C45- and C50-Carotenoids. Synthesis of Optically Active Acyclic C15-End Groups The optically active C15-end groups (S)- 12 , (S)- 13 and (R)- 14 were prepared from the C12-synthon (S)- 11 in good chemical and optical yield. These C15-end groups are suitable compounds for the synthesis of optically active C45- and C50-carotenoids.  相似文献   

8.
Dianin's compound (4‐p‐hydroxy­phenyl‐2,2,4‐tri­methyl­chroman) has been resolved by crystallization of the (S)‐(−)‐camphanic esters (S,S)‐ and (R,S)‐4‐(2,2,4‐tri­methyl­chroman‐4‐yl)­phenyl 4,7,7‐tri­methyl‐3‐oxo‐2‐oxabi­cyclo[2.2.1]heptane‐1‐carboxyl­ate, both C28H32O5, from 2‐methoxy­ethanol, yielding the pure S,S diastereomer. The relative stereochemistry of both diastereomers has been determined by X‐ray crystallography, from which the absolute stereochemistry could be deduced from the known configuration of the camphanate moiety. The crystallographic conformations have been analysed, including the 1:1 disorder of the R,S diastereomer.  相似文献   

9.
C45- and C50-Carotenoids. Synthesis of an Optically Active Cyclic C20-Building Block and of (2R,2′S)-3′,4′-Didehydro-1′,2′-dihydro-2-(4-hydroxy-3-methylbut-2-enyl)-2′-(3-methylbut-2-enyl)-β,ψ-caroten-1′-ol (= C. p. 473) The synthesis of the optically active C20-building block (R)- 16 and of the optically active C50-carotenoid C.p. 473 ( 1 ) starting from (?)-β-pinene is reported.  相似文献   

10.
Configuration of the Vitamin-D3-Metabolite 25,26-Dihydroxycholecalciferol: Synthesis of (25S,26)- and (25R,26)-Dihydroxycholecalciferol For selective synthesis of the title compounds, (25S)- 1b and (25R)- 1b (Scheme 1), the protected cholesterol precursors (25S)- 6 and (25R)- 6 were prepared from stigmasterol-derived steroid-units 4a-d and C5-side chain building blocks 5a–d by Grignard- or Wittig-coupling (Scheme 2), the configuration at C(25) of the target compounds being already present in the C5-units. Conversion of the cholesterol intermediates to the corresponding vitamin-D3 derivatives was carried out via the 7,8-didehydrocholesterol compounds (25S)- 2b and (25R)- 2b (Scheme 1), using the established photochemical-thermal transformation of the 5,7-diene system to the seco-triene system of cholecalciferol. The configuration at C(25) of the cholesterol precursors as assigned on basis of the known configuration of the C5-units used, was found to be in agreement with the result of a single crystal X-ray analysis on compound 11 . The configuration at C(25) remained untouched on conversion of the cholesterol ring system to the seco-triene system of vitamin D3 as evident from comparison of the lanthanide-induced CD. Cotton effects observed for (25S)- 3b and (25S) 1b . 25,26-Dihydroxycholecalciferol observed as a natural vitamin-D3 metabolite has (25S)-configuration.  相似文献   

11.
The ‘syn’-1,3-diols 3 , 4 and 5 with a C7, C6, and C5 chain, respectively, were synthesized from methyl hydrogen 3-hydroxyglutarate ( 2 ; Schemes 1 and 2). The latter is available in (R)- and (S)-configuration. Octyl (3R)-4-chloro-3-hydroxybutanoate ( 17 ) is an alternative starting material for the preparation of 5 (Scheme 3.) The epoxide 20 , derived from 5 in a one-pot reaction, is a versatile synthon, which selectively reacts with a great number of nucleophiles (Scheme 4).  相似文献   

12.
C45- and C50-Carotenoids, 1st Communication. Synthesis of (R)- and (S)-Lavandulol Starting with methyl (3 R)-3-hydroxybutanoate ((R)-7) and ethyl (3 S)-3- hydroxybutanoate ((S)- 11 ), respectively, (R)- and (S)-lavandulol ((R)- 1 and (S)- 1 ) were synthesized with high optical purity. The synthesized key intermediates (R)- 6 and (S)- 6 are suitable compounds for the synthesis of optically active acyclic C45- and C50-carotenoids.  相似文献   

13.
The Dicyanation of 1,4-Diaminoanthraquinones and the Reactivity of 1,4-Diamino-9,10-dioxo-9,10-dihydroanthracene-2,3-dicarbonitriles towards Nucleophilic Reagents The reaction of 1-amino-9, 10-dioxo-4-phenylamino-9,10-dihydroanthracene-2-sulfonic acid ( 1 , R?C6H5) with cyanide in water yields a mixture of 1-amino-9,10-dioxo-4-phenylamino-9,10-dihydroanthracene-2-carbonitrile ( 3 , R ? C6H5) and 1-amino-4-(phenylamino)anthraquinone ( 4 , R ? C6H5) under the usual reaction conditions (Scheme 1). In dimethylsulfoxide, however, a second cyano group is introduced, and 1-amino-9,10-dioxo-4-phenylamino-9,10-dihydroanthracene-2,3-dicarbonitrile (7) is formed (Scheme 2). The cyano groups are very reactive towards nucleophiles. The cyano group in 2-position can be substituted by hydroxide and aliphatic amines (Schemes 5 and 6). The cyano group in 3-position can be eliminated by aliphatic amines and hydrazine (Scheme 7). Nucleophilic attack at the cyano C-atom of the 2-cyano group by suitable reagents leads to ring formation, yielding e.g. 2-(Δ2-1, 3-oxazolin-2-yl)-, 2-(benz[d]imidazol-2-yl)- and 2-(1H-tetrazol-5-yl)anthraquinones (Schemes 8 and 10).  相似文献   

14.
Total Synthesis of Natural α-Tocopherol. I. Preparation of Bifunctional Optically Active Precursors for the Synthesis of the Side Chain by Means of Microbiological Transformations Our concept for a new total synthesis of natural α-tocopherol includes the synthesis of a corresponding (3 R, 7 R)-configurated C15 side chain to be built up by using twice an optically active C5 unit together with an achiral C5 end part. (S)-3-methyl-γ-butyrolactone ( 11 ) and (S)-2-methyl-γ-butyrolactone ( 9 ) represent suitable bifunctional C5-precursors for this purpose. These two key compounds have been prepared by fermentative transformation including the enantioselective hydrogenation of the double bond of ethyl-4, 4-dimethoxy-3-methylcrotonate ( 5 ) by bakers yeast (yielding 11 after ester hydrolysis and cyclization of the fermentation product) and (E)-3-(1′, 3′-dioxolan-2′-yl)-2-buten-1-ol ( 8 ) by the fungus Geotrichum candidum (yielding directly 9 ).  相似文献   

15.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. III. A New Concept for the Synthesis of the Enantiomeric Astaxanthins A new and efficient concept for the total synthesis of (3S, 3'S)- and (3R, 3'R)-astaxanthin ( 1a and 1c , resp.) in high overall yield and up to 99,2% enantiomeric purity is described. Key intermediates are the (S)- and (R)-acetals 10 and 17 , respectively (Scheme 2). These chiral building blocks were synthesized via three different routes: a) functionalization of the enantiomeric 3-hydroxy-6-oxo-isophorons4) 2 and 11 , respectively (Scheme 2); b) optical resolution of 3,4-dihydroxy-compound4) 19 (Scheme 3), and c) fermentative reductions of 6-oxo-isophorone derivatives (Schemes 4 and 5). - The absolute configurations of the two intermediates 12 and 13 (Scheme 2) have been confirmed by X-ray analysis. - The final steps leading to the enantiomeric astaxanthins are identical with those described for optically inactive astaxanthin [1].  相似文献   

16.
The formation of the new optically active C3‐symmetrical receptors (S,S,S)‐ 2 – 4 (Fig. 1), incorporating 1,3,5‐triphenylbenzene and 1,3,5‐tris(phenylethynyl)benzene platforms as ‘floors' and ‘ceilings', is described. The tris(phenylethynyl)benzene derivatives 9 and (S,S,S)‐ 10 (Scheme 1) for the three‐fold peptide coupling to yield the macrocyclic skeletons (Scheme 2) were prepared starting from 1,3,5‐triethynylbenzene by the Sonogashira cross‐coupling reaction. The optical rotations of the three macrocycles (S,S,S)‐ 2 – 4 , two of which ((S,S,S)‐ 2 and (S,S,S)‐ 3 ) are constitutional isomers, differ significantly, which is explained by differential twists induced into the macrocyclic skeletons by the leucine spacer in these bridges. 1 : 1 Host–guest complexes of (S,S,S)‐ 2 – 4 with octyl glucosides (Fig. 3) in CDCl3 are of modest stability (Ka≤270 M ?1 at 300 K). In these complexes, the monosaccharides are most probably nesting on one of the H‐bonding faces of the receptor rather than being accommodated in the cavity.  相似文献   

17.
C45- and C50-Carotenoids: Synthesis of Optically Active Cyclic C20-Building Blocks and of (2R,2′R)-2,2′-Bis(4-hydroxy-3-methyl-2-butenyl)-β,β-carotene ( = C.p. 450) The synthesis of the optically active C20-building blocks (R)- 26 and (R)- 39 and of the optically active cyclic C50-carotenoid C.p. 450 ( 3 ) starting from (?)-β-pinene is reported.  相似文献   

18.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

19.
Enantiomeric separation of d ‐ and l ‐serine on an octadecylsilica column was investigated using (2R)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (R‐NPCA), which was developed for a pre‐column derivatization reagent for electrochemical detection. In addition, (2S)‐2,5‐dioxopyrrolidin‐1‐yl‐2,5,7,8‐tetramethyl‐6‐(tetrahydro‐2H‐pyran‐2‐yloxy)chroman‐2‐carboxylate (S‐NPCA) was newly synthesized from (S)‐(?)‐6‐hydroxy‐2,5,7,8‐tetramethylchroman‐2‐carboxylic acid (Sα‐CA), and the enantiomeric separation of d ‐ and l ‐serine using S‐NPCA was also examined. The enantiomeric separation of d ,l ‐serine was achieved using the R‐ or S‐NPCA as a chiral derivatization reagent, and the elution orders of the enantiomers were reversed between R‐ and S‐NPCA. The elution orders of d ‐ and l ‐serine unexpectedly reversed between the phosphate buffer at pH 4.0 and pH 2.2, both of which were used in the mobile phase. Separation factors obtained using R‐ and S‐NPCA were similar—1.09 and 1.07, respectively. The detection limit was approximately 940 fmol on the column (signal‐to‐noise ratio 3) when the applied voltage was +650 mV. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
For the assignment of the configuration at C(8) and C(15) of the natural oviposition-deterring pheromone 1 in Rhagoletis cerasi L., the four possible stereoisomers of 1 are synthesized. By condensing the C6 building blocks (5R)- 4 and (5S)- 4 with the boron enolates of the C10 building blocks (4S)- 13 and (4R)- 13 , followed by decarboxylative dehydration, all stereoisomers of 16 are available (Scheme 5). Glucosylation of 16 followed by formation of the taurin amide gives, after deprotection, the four stereoisomers (8R,15S)- 1 , (8R,15R)- 1 , (8R,15S) -1 , and (8S,15S)- 1 (Scheme 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号