首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Koner R  Lin HH  Wei HH  Mohanta S 《Inorganic chemistry》2005,44(10):3524-3536
A series of heterodinuclear Cu(II)Ln(III) and Ni(II)Ln(III) complexes, [M(II)L(1)Ln(III)(NO(3))(3)] (M = Cu or Ni; Ln = Ce-Yb), with the hexadentate Schiff base compartmental ligand N,N'-ethylenebis(3-ethoxysalicylaldiimine) (H(2)L(1)) have been synthesized and characterized. The X-ray crystal structure determinations of 13 of these compounds reveal that they are all isostructural. All of these complexes crystallize with the same orthorhombic P2(1)2(1)2(1) space group with closely similar unit cell parameters. Typically, the structure consists of a diphenoxo-bridged 3d-4f dinuclear core, self-assembled to two dimensions due to the intermolecular nitrate...copper(II) or nitrate...nickel(II) semicoordination and weak C-H...O hydrogen bonds. Despite that, the metal centers of the neighboring units are well separated (the ranges of the shortest intermolecular contacts (A) are (M...M) 7.46-7.60, (Ln...Ln) 8.56-8.69, and (M...Ln) 6.12-6.20). Variable-temperature (5-300 K) magnetic susceptibility measurements of all the complexes have been made. The nature of exchange interactions in the Cu(II)Ln(III) systems has been inferred from the Deltachi(M)T versus T plots, where Deltachi(M)T is the difference between the values of chi(M)T for a Cu(II)Ln(III) system and its corresponding Ni(II)Ln(III) analogue. Ferromagnetic interactions seem to be exhibited by the Cu(II)Gd(III), Cu(II)Tb(III), Cu(II)Dy(III), Cu(II)Ho(III), Cu(II)Tm(III), and Cu(II)Yb(III) complexes, while, for the Cu(II)Er(III) complex, no definite conclusion could be reached. On the other hand, among the lower members of the series, the complexes of Ce(III), Nd(III), and Sm(III) exhibit antiferromagnetic interactions, while the Cu(II)Pr(III) and Cu(II)Eu(III) analogues behave as spin-uncorrelated systems. The observations made here vindicate the proposition of Kahn (Inorg. Chem. 1997, 36, 930). The Deltachi(M)T versus T plots also suggest that, for most of the Cu(II)Ln(III) complexes, the exchange interactions are fairly strong, which probably could be related to the small dihedral angle (ca. 4 degrees) between the CuO(2) and LnO(2) planes.  相似文献   

2.
The reaction of Cu(OAc)2 and Ln(OAc)3 (Ln = Gd, Tb and Dy) with 2-amino-2-methyl-1,3-propanediol (ampdH2) under solvothermal conditions has afforded a new family of isostructural octanuclear Cu4Ln4 complexes with the formula [Cu4Ln4(OAc)12(ampdH)8(OH2)2] (Ln = Gd (1), Tb (2) and Dy(3)) in good yield. Variable temperature magnetic susceptibility measurements reveal weak intramolecular exchange interactions for 1 and 2. Ferromagnetic coupling is observed for 1 and attributed to Cu...Gd interactions. In contrast, the magnetic susceptibility behaviour of 2 arises from a combination of intramolecular exchange interactions and the crystal field splitting of the (7)F6 ground state of the Tb(III) ions.  相似文献   

3.
Shiga T  Ohba M  Okawa H 《Inorganic chemistry》2004,43(14):4435-4446
A series of trinuclear Cu(II)Ln(III)Cu(II) complexes with the bridging ligand 2,6-di(acetoacetyl)pyridine have been prepared by one-pot reaction with Cu(NO(3))(2).3H(2)O and Ln(NO(3))(3).nH(2)O in methanol. X-ray crystallographic studies for all the complexes indicate that two L(2)(-) ligands selectively sandwich two Cu(II) ions with the 1,3-diketonate entities and one Ln(III) ion with the 2,6-acetylpyridine entity to form a trinuclear CuLnCu core bridged by the enolate oxygen atoms. Cryomagnetic properties of the complexes are studied with respect to the electronic structure of the Ln ion.  相似文献   

4.
He F  Tong ML  Yu XL  Chen XM 《Inorganic chemistry》2005,44(3):559-565
Discrete dinuclear and polymeric heterometallic copper(II)-lanthanide(III) complexes have been synthesized upon variation of pH and characterized by X-ray diffraction analysis. Reactions of the ligand Htza (tetrazole-1-acetic acid) with copper(II) and lanthanide(III) salts gave dinuclear [CuLn(tza)4(H2O)5Cl] complexes at the low pH of 3.5 and 2D heterometallic coordination polymers with high-nuclearity [{Cu2(OH)2}2{Cu12Ln6(mu3-OH)24(Cl)(1/2)(NO3)(1/2)(tza)12(H2O)18}](NO3)(9).8H2O (Ln = Gd or Nd) at a higher pH of 6.6. The acidity of the reaction solution can cause drastic changes in the structures of the products. In the dinuclear complexes, each pair of adjacent dinuclear molecules is linked through hydrogen bonds and pi-pi stacking interactions, and the whole structure is a hydrogen-bonded three-dimensional cubic net. In the coordination polymers, the connecting nodes are [Cu12Ln6] units, which are interconnected by [Cu2O2] units into two-dimensional structures. Magnetic studies exhibit the existence of weak exchange interactions between the Cu(II) and Ln(III) ions bridged by carboxylate and hydroxy ligands.  相似文献   

5.
Three isostructural Cu 2Ln 2 1-D polymers [Cu 2Ln 2L 10(H 2O) 4.3H 2O] n where Ln = Gd ( 1), Er ( 2), and Y ( 3) and HL= trans-2-butenoic acid, were synthesized and characterized by X-ray crystallography, electron paramagnetic resonance, and magnetic measurements. Pairs of alternate Cu 2 and Ln 2 dinuclear units are combined into a linear array by a set of one covalent eta (2):eta (1):mu 2 carboxylate oxygen and two H bonds, at Cu...Ln distances of ca. 4.5 A. These units exhibit four eta (1):eta (1):mu 2 and two eta (2):eta (1):mu 2 carboxylate bridges, respectively. Magnetic measurements between 2 and 300 K, fields B 0 = mu 0 H between 0 and 9 T, and electron paramagnetic resonance (EPR) measurements at the X-band and room temperature are reported. The magnetic susceptibilities indicate bulk antiferromagnetic behavior of the three compounds at low temperatures. Magnetization and EPR data for 1 and 3 allowed evaluation of the exchange couplings between both Cu and Gd ions in their dinuclear units and between Cu and Gd neighbor ions in the spin chains. The data for the isolated Cu 2 units in 3 yield g || = 2.350 and g [symbol: see text] = 2.054, J Cu-Cu = -338 (3) cm (-1) for the exchange coupling [ H ex(1,2) = - J 1-2 S1 x S2], and D 0 = -0.342 (0.003) cm (-1) and E 0 = 0.003 (0.001) cm (-1) for the zero-field-splitting parameters of the triplet state arising from anisotropic spin-spin interactions. Considering tetranuclear blocks Gd-Cu-Cu-Gd in 1, with the parameters for the Cu 2 unit obtained for 3, we evaluated ferromagnetic interactions between Cu and Gd neighbors, J Cu-Gd = 13.0 (0.1) cm (-1), and between Gd ions in the Gd 2 units, J Gd-Gd = 0.25 (0.02) cm (-1), with g Gd = 1.991. The bulk antiferromagnetic behavior of 1 is a consequence of the antiferromagnetic coupling between Cu ions and of the magnitude, |J Cu-Gd|, of the Cu-Gd exchange coupling. Compound 2 displays a susceptibility peak at 15 K that may be interpreted as the combined result from antiferromagnetic couplings between Er (III) ions in Er 2 units and their coupling with the Cu 2 units.  相似文献   

6.
用 XPS测定了 LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到 LnCu2O4中稀土金属的 3d电子结合能比相应的稀土金属简单氧化物的 3d结合能低 0.8~ 0.9 eV,而 Cu的 2p电子结合能比 CuO的高 0.4~ 0.5 eV,因此推断在 LnCu2O4的 Ln- O- Cu链中存在 Cu→ O→ Ln电荷转移 .XPS分析还表明 LnCu2O4的 Cu原子上有较低的电荷密度,但不存在混合价态 .此外,通过比较价电子能谱,发现 NdCu2O4的 Ln 4f Cu 3d O 2p价带中心比 GdCu2O4的价带中心向 Fermi能级移近了 3.4 eV,而且 NdCu2O4的价带谱更窄 .  相似文献   

7.
Encapsulation complexes formulated as {[La(DMF)(9)](2)[Cu(12)(CN)(18)].2DMF}(infinity), 1, and {[Ln(DMF)(8)][Cu(6)(CN)(9)].2DMF}(infinity) (Ln = Eu, 2; Gd, 3; Er, 4) were obtained from the one step reaction of LnCl(3) (Ln = La, Eu, Gd, Er) with CuCN and KCN in DMF. They consist of a three-dimensional Cu-CN anionic array with pockets occupied by the cation, [Ln(DMF)(x)](3+) (x = 8, 9). These complexes are believed to be the first examples of encapsulated Ln(3+) cations, and the zeolite-like anionic network is unique. A two step procedure that employs the same components generates the layer structure {Ln(DMF)(4)Cu(2)(CN)(5)}(infinity) (Ln = La, 5; Gd, 6; Er, 7) in which the five-membered ring repeating unit has Cu-CN-Ln and Cu-CN-Cu linkages which are also without precedent. Encapsulation complexes can also be prepared from CuCl, reacting with LnCl(3) and KCN. The crystal structure of {K(DMF)(2)Cu(CN)(2)}(infinity) (8) provides insight into the proposed reaction pathways for forming these two different structural types.  相似文献   

8.
The reaction of diglycolic acid, O(CH2CO2H)2, with Cu(NO3)2·2H2O and lanthanoid nitrate hydrate produces a series of novel Ln–Cu mixed metal complexes, [Ln2Cu3{O(CH2CO2)2}6]·nH2O (Ln=La, Nd, n=9; Ln=Er, n=6), which have been characterized by elemental analysis, i.r. spectroscopy, magnetic measurements and X-ray crystallography. The Ln3+ and Cu2+ ions are connected by the carboxylate groups of the ligands, resulting in the formation of a complicated network.  相似文献   

9.
用XPS测定了LnCu2O4(Ln=Gd, Nd)的内层和价层电子能谱,观察到LnCu2O4中稀土金属的3d电子结合能比相应的稀土金属简单氧化物的3d结合能低0.8~0.9 eV,而Cu的2p电子结合能比CuO的高0.4~0.5 eV,因此推断在LnCu2O4的Ln-O-Cu链中存在Cu→O→Ln电荷转移.XPS分析还表明LnCu2O4的Cu原子上有较低的电荷密度,但不存在混合价态.此外,通过比较价电子能谱,发现NdCu2O4的Ln 4f Cu 3d O 2p价带中心比GdCu2O4的价带中心向Fermi能级移近了3.4 eV,而且NdCu2O4的价带谱更窄.  相似文献   

10.
The hydrothermal reaction of Ln(2)O(3) (Ln = Dy and Ho), Cu(OAc)(2).2H(2)O, and oxydiacetic acid in the approximate mole ratio of 1:3:8 resulted in the formation of two new members of the isostructural series of polymers formulated as [(Cu(3)Ln(2)(oda)(6)(H(2)O)(6)).12H(2)O](n), crystallizing in the hexagonal crystal system, space group P6/mcc (No. 192). Temperature-dependent magnetic susceptibilities and EPR spectra are reported for the heterometallic compounds Cu-Dy 1, Cu-Ho 2, Cu-Er 3, and Cu-Y 4. The results are discussed in terms of the structure of the compounds, the electronic properties of the lanthanide ions, and the exchange interactions between the magnetic ions.  相似文献   

11.
Two discrete nitrate-bridged novel "pseudo-double-propeller"-shaped hexanuclear Cu/Ln clusters of the formula [Cu(4)Ln(2)L(4)L'(4)(NO(3))(2)(OH(2))(2)]·3NO(3)·4H(2)O [Ln = Dy, Gd; LH = o-vanilin; L'H = 2-(hydroxyethyl)pyridine] were synthesized and characterized. Single-crystal X-ray diffraction studies revealed the trimeric half-propeller-type Cu(2)/Ln core connected to other opposite-handed similar trimers by a bridging nitrate ligand. The Dy analogue, [Cu(4)Dy(2)L(4)L'(4)(NO(3))(2)(OH(2))(2)]·3NO(3)·4H(2)O, shows frequency-dependent out-of-phase alternating-current magnetic susceptibility, which indicates that this novel discrete [Cu(4)Dy(2)] heterometallic cluster may exhibit single-molecule-magnet behavior.  相似文献   

12.
Laser photoionization and ligand photodissociation in Ln(thd)(3) (Ln = Eu, Tb, Gd; thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) are studied in a molecular beam via time-of-flight mass spectrometry. The fragmentation patterns are strongly wavelength dependent. With 355 nm excitation, the mass spectrum is dominated by Ln(2+), Ln(+), and LnO(+) fragments. The bare Ln ions are believed to arise from photoionization of neutral Ln atoms. The Ln atoms, in turn, are produced from the Ln(thd)(3) complex in a sequence of Ln reductions (through ligand-to-metal charge-transfer transitions), with each reduction being accompanied by the dissociation of a neutral ligand radical. In contrast, under visible-light (410-450 nm) excitation, a significant Ln(thd)(n)(+) signal is observed (where n = 2,3 for Ln = Tb,Gd and n = 1-3 for Ln = Eu). Thus, with visible excitation, photoionization of Ln(thd)(n) competes effectively with the Ln-reduction/ligand-dissociation sequence that leads to the dominant bare Ln-ion signal seen with 355 nm excitation. The fact that monoligated Ln(thd)(+) is observed only for Ln = Eu is interpreted in terms of the relative accessibility of an excited ligand-to-metal charge-transfer state from the ground electronic state of neutral Ln(thd).  相似文献   

13.
He F  Tong ML  Chen XM 《Inorganic chemistry》2005,44(23):8285-8292
Facile one-pot reactions led to the formations of dinuclear [CuLn(hmp)2(NO3)3(H2O)2] (Ln = Tb (1.Tb), Gd (1.Gd), or La (1.La)), and trinuclear [Cu2Ln(mmi)4(NO3)(H2O)2](ClO4)(NO3).2H2O (Ln = Tb (2.Tb) or Gd (2.Gd)) and [Cu2La(mmi)4(NO3)2(H2O)](ClO4).2H2O (2.La) with polydentate ligands 2-(hydroxymethyl)-pyridine and 2-hydroxymethyl-1-methyl-imidazole. In these complexes, each pair of Cu(II) and Ln(III) ions is linked by a double mu-alkoxo bridge. The temperature dependences of the magnetic susceptibilities of 1 and 2 were investigated in the range of 2-300 K. The dinuclear and trinuclear Cu-Gd complexes exhibit ferromagnetic interaction. The coupling constant J values in the heterodinuclear Cu-Gd complexes are correlated to values of the dihedral angles alpha between the two O-Cu-O and O-Gd-O fragments of the bridging CuO2Gd networks, with the largest J value associated with the smallest alpha value. The occurrence of a ferromagnetic interaction between Cu(II) and Gd(III) ions of the trinuclear entity is supported by the field dependence of the magnetization. The field dependence of the magnetization at 2 K of 1.Gd and 2.Gd confirms the nature of the ground state and of the Cu(II)-Gd(III) interaction, while alternating current susceptibility measurements demonstrates out-of-phase ac susceptibility signals of 1.Tb, which is the molecule-based magnetic material of the smallest nuclearity which exhibits frequency-dependent behavior within the 3d-4f mixed-metal systems.  相似文献   

14.
A series of organic-inorganic hybrid compounds, K2H7[{Ln(PW11O39)2}{Cu2(bpy)2(mu-ox)}].xH2O (Ln = La, x approximately = 18 (1); Ln = Pr, x approximately = 18(2); Ln = Eu, x approximately = 16(3); Ln = Gd, x approximately 22(4); Ln = Yb, x approximately = 19 (5); bpy = 2,2'-bipyridine and ox = oxalate), have been isolated by the conventional solution method. Single-crystal X-ray diffraction studies reveal that compounds 1-5 are isomorphic and consist of one-dimensional chains, which are constructed by alternating bis(undecatungstophosphate) lanthanates [Ln(PW11O39)2](11-) and dinuclear copper(II)-oxalate complexes [Cu2(bpy)2(mu-ox)]2+.pi-pi interactions of the bpy ligands from adjacent chains lead to their three-dimensional structures. An analogue of potassium K2H9[{K(PW11O39)2}{Cu2(bpy)2(mu-ox)}1].approximately 20.5H2O(6) has also been obtained. The syntheses and structures of these compounds are reported here. Magnetic properties of 1, 2 and 3 are discussed as well. Attempts to crystallize similar compounds containing Co(II) and Ni(II) were unsuccessful.  相似文献   

15.
Synthesis, crystal structures and magnetic studies are reported for four new heterometallic Cu(II)-Ln(III) clusters. The reaction of Cu(NO(3))(2)·3H(2)O with triethanolamine (teaH(3)), pivalic acid, triethylamine and Ln(NO(3))(3)·6H(2)O (Ln=Gd, Tb, Dy and Ho) results in the formation of four isostructural nonanuclear complexes of general formula [Cu(II)(5)Ln(III)(4)O(2)(teaH)(4){O(2)CC(CH(3))(3)}(2)(NO(3))(4)(OMe)(4)]·2MeOH·2Et(2)O [Ln=Gd (1), Tb (2), Dy (3) and Ho (4)]. The metal core of each cluster is made up of four face- and vertex-sharing tetrahedral units. Solid-state DC magnetic susceptibility studies reveal competing anti- and ferromagnetic interactions within each cluster leading to large-spin ground states for 1-4. Solid-state AC magnetic susceptibility studies show frequency-dependent out-of-phase (χ'(M)) signals for 2-4 below 4 K, suggestive of single-molecule magnet behaviour. Ab initio calculations on one of the anisotropic examples (3) provided a rare set of J values for Dy-Cu and Cu-Cu exchange interactions (Dy-Dy zero), some ferro- and some antiferromagnetic in character, that explain its magnetic behaviour.  相似文献   

16.
The first 3d-4f-5d heterotrimetallic complexes using [W(V)(bipy)(CN)(6)](-) as a metalloligand were synthesized (bipy = 2,2'-bipyridine). The structural and magnetic properties of three [Cu(II)Ln(III)W(V)] complexes (Ln = Gd, Ho, Tb) are discussed.  相似文献   

17.
Seven isomorphous 1D chain Ln3+ complexes Ln(BTA)(HCOO)(H2O)3 (Ln = Pr (1), Gd (2), Eu (3), Tb (4) Dy (5), Er (6) and Yb (7)), and two formate coordinating and bridging 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr (8) and Nd (9)) have been synthesized and characterized by single crystal X-ray diffraction analysis. Although the Ln3+ ions in 1-7 have different radius, the trivalent lanthanide ions in 1-7 show the same coordinated environment. The well-defined single crystal structures of 8 and 9 are first samples for formate-bridged Ln3+ metallic complexes. The luminescent properties of solid samples of 2-5 at room temperature and the magnetic property of 2 have been also reported and discussed in this paper.  相似文献   

18.
The direct reaction of lanthanoid metals with 3,5-diphenylpyrazole (Ph2pzH) at 300 degrees C under vacuum in the presence of mercury gives the structurally characterized [Ln3(Ph2pz)9] (Ln = La or Nd), [Ln2(Ph2pz)6] (Ln = Er or Lu). Similar reactions provided heteroleptic [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er and Y). The last was obtained only from impure Ph2pzH, but was subsequently prepared by treatment of [Yb(Ph2pz)3(thf)2] with Ph2pzH. Reactions of Yb with Ph2pzH at 200 degrees C gave a poorly soluble divalent species which was converted by 1,2-dimethoxyethane into [Yb(Ph2pz)2(dme)2]. Single crystal X-ray structures established a bowed trinuclear pyrazolate-bridged structure for [Ln3(Ph2pz)9] (Ln = La or Nd), Ln...Ln...Ln being 135.94(1) degrees (La) and 137.41(1) degrees(Nd). There are two eta2-Ph2pz ligands on the terminal Ln atoms and one on the central metal with adjacent Ln atoms linked by one mu-eta2:eta2 and one mu-eta5 (to terminal Ln):eta2 pyrazolate group. Thus the terminal Ln atoms are formally nine-coordinate and the central Ln, ten-coordinate. By contrast, [Ln2(Ph2pz)6] (Ln = Er or Lu) complexes are dimeric with two terminal (eta2) and two bridging (mu-eta2:eta2) pyrazolates and eight-coordinate lanthanoids. All six heteroleptic complexes [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb) are isomorphous with three equatorial eta2-Ph2pz groups, transoid(N-Ln-N 158.18(6)-161.43(9) degrees) eta1-pyrazole ligands, and eight-coordinate Ln throughout.  相似文献   

19.
Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.  相似文献   

20.
Zhang JJ  Hu SM  Xiang SC  Sheng T  Wu XT  Li YM 《Inorganic chemistry》2006,45(18):7173-7181
Four novel high-nuclear 3d-4f heterometallic clusters were obtained through the self-assembly of Ln(III), Cu(II), and amino acid ligands (2-methylalanine (mAla), glycine (Gly), and L-proline (Pro), respectively). The metal skeleton of cluster 1, [Gd6Cu24(mu3-OH)30(mAla)16(ClO4)(H2O)22].(ClO4)17.(OH)2.(H2O)2(0), may be described as a huge {Gd6Cu12} octahedron connected with 12 additional Cu(II) ions. The structure of cluster 2, Na4[Tb6Cu26(mu3-OH)30(Gly)18(ClO4)(H2O)22].(ClO4)25.(H2O)42, may be described as a {Tb6Cu24} main structure connected with two [Cu(Gly)(H2O)2]+ groups. Compounds {[Ln6Cu24(mu3-OH)30(Pro)12(Ac)6(ClO4)(H2O)13]2Cu(Pro)2}.(ClO4)18.(OH)16.(H2O)55 (Ln= Sm (3), Gd (4)) are 61-nuclear clusters, which represent the largest known 3d-4f clusters so far, the structure can be described as two {Ln6Cu24} octahedral units connected by a trans-Cu(proline)2 bridge. The electrical conductivity measurements reveal that they are temperature-sensitive semiconductors. The magnetic susceptibility measurements display that compound 4 is ferromagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号