首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究不同含氧燃料与柴油掺混后碳烟降低机理, 本文在自行设计的燃烧器上构建部分预混层流火焰, 采用甲苯和正庚烷混合物(T20, 20%(体积分数)甲苯、80%正庚烷)作为柴油替代物,并分别添加甲醇、乙醇、正丁醇、丁酸甲酯和2,5-二甲基呋喃(DMF), 且保证混合燃料的含氧量均为4%. 进而应用激光诱导荧光法和激光诱导炽光法分别测量不同混合燃料的火焰中多环芳香烃(PAHs)的荧光光谱和碳烟浓度. 结果表明: 通过PAHs的荧光光谱可测量不同燃料火焰中PAHs的生成和增长历程. 四环芳香烃(A4)的生成氧化规律和碳烟基本一致, 说明通过分析A4变化可以预测碳烟变化. 添加含氧燃料后, T20燃料中甲苯含量降低是导致PAHs的荧光光谱强度降低和碳烟生成量减少的主要原因; 同时不同含氧燃料本身对多环芳香烃的生成贡献能力也是影响PAHs的荧光强度和碳烟生成的重要原因. 含氧量相当时, 掺混正丁醇后PAHs的荧光光谱强度和碳烟浓度比添加甲醇、乙醇、丁酸甲酯和DMF这四种含氧燃料的更低. 因此从含氧燃料结构来讲, 正丁醇掺混入T20燃料中降低PAHs和碳烟作用最显著.  相似文献   

2.
提出了一个包含103组分和395个基元反应, 能够较好描述多组分汽油替代燃料多环芳烃(PAHs)生成的化学动力学机理模型. 计算结果与实验数据的对比表明, 该机理能够准确地计算乙烯、甲苯、正庚烷预混火焰和正庚烷部分预混对冲火焰中PAHs及其前驱物组分分布. 虽然本文机理目前还无法直接应用于汽油燃烧过程的PAHs多维数值模拟, 但与现有的汽油替代燃料PAHs机理相比, 本文提出的机理规模更小, 距离实际应用的目标更近.  相似文献   

3.
This work provides experimental evidence on how the molecular compositions of fuel-rich low-pressure premixed flames are influenced as the oxygenates dimethyl ether (DME) or ethanol are incrementally blended into the propene fuel. Ten different flames with a carbon-to-oxygen ratio of 0.5, ranging from 100% propene (phi = 1.5) to 100% oxygenated fuel (phi = 2.0), are analyzed with flame-sampling molecular-beam mass spectrometry employing electron- or photoionization. Absolute mole fraction profiles for flame species with masses ranging from m/z = 2 (H2) to m/z = 80 (C6H8) are analyzed with particular emphasis on the formation of harmful emissions. Fuel-specific destruction pathways, likely to be initiated by hydrogen abstraction, appear to lead to benzene from propene combustion and to formaldehyde and acetaldehyde through DME and ethanol combustion, respectively. While the concentration of acetaldehyde increases 10-fold as propene is substituted by ethanol, it decreases as propene is replaced with DME. In contrast, the formaldehyde concentration rises only slightly with ethanol replacement but increases markedly with addition of DME. Allyl and propargyl radicals, the dominant precursors for benzene formation, are likely to be produced directly from propene decomposition or via allene and propyne. Benzene formation through propargyl radicals formed via unsaturated C2 intermediates in the decomposition of DME and ethanol is negligibly small. As a consequence, DME and ethanol addition lead to similar reductions of the benzene concentration.  相似文献   

4.
This work reports an investigation on laminar premixed flames of tetralin at 30 Torr and equivalence ratios of 0.7 and 1.7. Measurements of the chemical structure including identification and mole fraction measurements of free radicals, isomers, and polycyclic aromatic hydrocarbons (PAHs) were performed using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV‐PIMS). A kinetic model with 296 species and 1 577 reactions was developed and validated against the flame chemical structure data measured in this work. Modeling analysis reveals the key reaction pathways in tetralin decomposition and PAHs formation. The H‐atom abstraction reactions by H, O, and OH are found to control the consumption of tetralin in the lean flame, while those by H play the dominant role in the rich flame. Indene and naphthalene have very high concentration levels in the rich tetralin flame due to the existence of direct formation pathways from the decomposition of tetralin. The two bicyclic PAHs and their radicals play significant roles in the PAHs growth process of tetralin combustion, which results in the high sooting tendency of tetralin compared to those of alkylbenzenes with smaller or same carbon atom numbers.  相似文献   

5.
二甲醚和乙醇低压层流预混火焰的对比研究   总被引:1,自引:0,他引:1  
利用分子束质谱结合真空紫外同步辐射光电离技术对相同燃烧条件下的低压层流预混二甲醚/氧气/氩气和乙醇/氧气/氩气火焰进行研究.通过测量光电离效率曲线,识别了二甲醚和乙醇火焰的中间物种,得到相应的火焰质谱;通过测量火焰中各物种在燃烧炉炉膛各位置的电离信号强度,得到了各物种的摩尔分数分布曲线.结合两种燃料分子不同的化学结构及详细的燃烧化学反应机理,分析了两火焰中间物种生成特性的异同.研究结果表明:甲醛为两火焰中最主要的C1中间物种;二甲醚火焰趋向于生成C1中间物种,C2物种摩尔分数较低;乙醇火焰中乙醛、乙烯、乙炔和乙烯酮等C2中间物种的摩尔分数明显高于二甲醚火焰中的值.  相似文献   

6.
A fuel‐rich premixed laminar methyl methacrylate (MMA)/O2/Ar flame at low pressure (30 Torr) with the equivalence ratio (?) of 1.60 is studied in this work. Synchrotron vacuum ultraviolet photoionization combined with molecular beam mass spectrometry is employed to identify the combustion intermediates including isomeric intermediates. The observed combustion intermediates can be classified as four types: radicals, non‐cyclic hydrocarbons, cyclic hydrocarbons and oxygenates. Benzene is the unique aromatic hydrocarbon detected in this work, and several oxygenates with two oxygen atoms are identified. Mole fraction profiles of most intermediates are evaluated, which can help understand the MMA combustion mechanism under fuel‐rich conditions. The similarities among rich flames of MMA and other oxygenated fuels, as well as the characteristics of rich MMA flame, are also discussed. The results show that combustion of MMA not only reduces soot emissions, but also has low concentrations of some potential toxic by‐products. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we present a new database of thermodynamic properties for polycyclic aromatic hydrocarbons (PAH). These large aromatic species are formed in very rich premixed flames and in diffusion flames as part of the gas-phase chemistry. PAH are commonly assumed to be the intermediates leading to soot formation. Therefore, accurate prediction of their thermodynamic properties is required for modeling soot formation. The present database consists of 46 species ranging from benzene (C6H6) to coronene (C24H12) and includes all the species usually present in chemical mechanisms for soot formation. Geometric molecular structures are optimized at the B3LYP/6-31++G(d,p) level of theory. Heat capacity, entropy, and energy content are calculated from these optimized structures. Corrections for hindered rotor are applied on the basis of torsional potentials obtained from second-order M?ller-Plesset perturbation (MP2) and Dunning's consistent basis sets (cc-pVDZ). Enthalpies of formation are calculated using the mixed G3MP2//B3 method. Finally, a group correction is applied to account for systematic errors in the G3MP2//B3 computations. The thermodynamic properties for all species are available in NASA polynomial form at the following address: http://www.stanford.edu/group/pitsch/.  相似文献   

8.
The combustion of fossil fuels forms polycyclic aromatic hydrocarbons (PAHs) composed of five‐ and six‐ membered aromatic rings, such as indene (C9H8), which are carcinogenic, mutagenic, and deleterious to the environment. Indene, the simplest PAH with single five‐ and six‐membered rings, has been predicted theoretically to be formed through the reaction of benzyl radicals with acetylene. Benzyl radicals are found in significant concentrations in combustion flames, owing to their highly stable aromatic and resonantly stabilized free‐radical character. We provide compelling experimental evidence that indene is synthesized through the reaction of the benzyl radical (C7H7) with acetylene (C2H2) under combustion‐like conditions at 600 K. The mechanism involves an initial addition step followed by cyclization and aromatization through atomic hydrogen loss. This reaction was found to form the indene isomer exclusively, which, in conjunction with the high concentrations of benzyl and acetylene in combustion environments, indicates that this pathway is the predominant route to synthesize the prototypical five‐ and six‐membered PAH.  相似文献   

9.
Models resulting from the merging of validated kinetic schemes were used to compile a new detailed mechanism for benzene combustion in laminar flames. The proposed model, featuring 215 species and 1313 reactions, has been validated using fuel-rich, low-pressure, premixed benzene-oxygen-argon flames available in the literature. Good agreement between simulated and experimental data is achieved for the major reactants, intermediates, and products. However, computed maxima for some polyaromatic hydrocarbons were lower than experimental ones.  相似文献   

10.
Previous studies suggest that soot formed in premixed flat flames can contain a substantial amount of aliphatic compounds. Presence of these compounds may affect the kinetics of soot mass growth and oxidation in a way that is currently not understood. Using an infrared spectrometer coupled to a microscope (micro-FTIR), we examined the composition of soot sampled from a set of ethylene-argon-oxygen flames recently characterized (A. D. Abid, et al. Combust. Flame, 2008, 154, 775-788), all with an equivalence ratio Φ=2.07 but varying in maximum flame temperatures. Soot was sampled at three distances above the burner surface using a probe sampling technique and deposited on silicon nitride thin film substrates using a cascade impactor. Spectra were taken and analyses performed for samples collected on the lowest five impactor stages with the cut-off sizes of D(50)=10, 18, 32, 56 and 100 nm. The micro-FTIR spectra revealed the presence of aliphatic C–H, aromatic C–H and various oxygenated functional groups, including carbonyl (C=O), C–O–C and C–OH groups. Spectral analyses were made to examine variations of these functional groups with flame temperature, sampling position and particle size. Results indicate that increases in flame temperature leads to higher contents of non-aromatic functionalities. Functional group concentrations were found to be ordered as follows: [C=O]<[C–O]<[aliphatic C–H]. Aliphatic C–H was found to exist in significant quantities, with very little oxygenated groups present. The ratio of these chemical functionalities to aromatic C–H remains constant for particle sizes spanning 10-100 nm. The results confirm a previous experimental finding: a significant amount of aliphatic compounds is present in nascent soot formed in the flames studied, especially towards larger distances above the burner surface.  相似文献   

11.
An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.  相似文献   

12.
A fuel-lean laminar premixed methylmethacrylate/oxygen/argon flame at 2.67 kPa with an equivalence ratio (phi) of 0.75 has been investigated with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular beam sampling mass spectrometry techniques. Isomers of most observed species in the flame have been identified by measurements of photoionization mass spectra and the near-threshold photoionization efficiency spectra. Mole fraction profiles for about 42 flame species are displayed. Free radicals such as CH3, C2H3, C2H5, C3H3, C3H5, C2H3O, C4H7, C3H5O, C3H7O, C4H3O, C4H9O, C4H5O2, C4H7O2, and C5H7O2, which should be of importance in understanding the formation mechanism of some toxic substances, were detected in the flame. Moreover, no isomers of any PAHs have been detected in the lean flame. Combined with the mole fraction profiles, the formation mechanisms of the free radicals, oxygenated compounds, and other molecular intermediates are proposed and will provide important information on modeling the combustion kinetics of methylmethacrylate (MMA).  相似文献   

13.
The self-reaction of propargyl (C3H3) radicals has been widely suggested as one of the key routes forming benzene in a variety of aliphatic flames. Currently, in the majority of aromatic models, the C3H3 + C3H3 submechanism often contains one or two C6H6 isomers and a few global reaction steps, which do not adequately represent the actual recombination chemistry. Recent experimental and theoretical studies on the direct propargyl recombination and subsequent C6H6 isomerization have provided sufficient information to revisit and revise the C3H3 + C3H3 reaction submechanism. In the present work, a semidetailed kinetic model consisting of seven isomeric C6H6 species and 14 reaction steps was constructed based on the most recent potential energy surface for this system. The trial model was subjected to systemic optimization by use of a recently developed physically bounded Gauss-Newton (PGN) method against detailed species profiles of direct propargyl recombination and 1,5-hexadiyne (15HD) isomerization obtained from experiments at high temperatures in a shock tube and at low temperatures in a flow reactor, which were all measured at very high pressure (shock tube) or atmospheric (flow reactor) conditions. Predictions of the optimized model were in excellent agreement with all experimental measurements. The optimized C3H3 + C3H3 reaction subset was also tested for flame modeling. Two different aromatic chemistry models that incorporate benzene formation from propargyl radicals as a single step reaction were modified to include the complete submechanism for propargyl recombination. The updated models predict significant percentages of three isomeric species [2-ethynyl-1,3-butadiene (2E13BD), fulvene, and benzene] in premixed fuel-rich acetylene and ethylene flames, reflecting the observed flame structures.  相似文献   

14.
Temperature and mole fraction profiles have been measured in laminar stoichiometric premixed CH4/O2/N2 and CH4/1.5%C6H5CH3/O2/N2 flames at low pressure (0.0519 bar) by using thermocouple, molecular beam/mass spectrometry (MB/MS), and gas chromatography/mass spectrometry (GC/MS) techniques. The present study completes our previous work performed on the thermal degradation of benzene in CH4/O2/N2 operating at similar conditions. Mole fraction profiles of reactants, final products, and reactive and stable intermediate species have been analyzed. The main intermediate aromatic species analyzed in the methane-toluene flame were benzene, phenol, ethylbenzene, benzylalcohol, styrene, and benzaldehyde. These new experimental results have been modeled with our previous model including submechanisms for aromatics (benzene up to p-xylene) and aliphatic (C1 up to C7) oxidation. Good agreement has been observed for the main species analyzed. The main reaction paths governing the degradation of toluene in the methane flame were identified, and it occurs mainly via the formation of benzene (C6H5CH3 + H = C6H6 + CH3) and benzyl radical (C6H5CH3 + H = C6H5CH2 + H2). Due to the abundance of methyl radicals, it was observed that recombination of benzyl and methyl is responsible for main monosubstitute aromatic species analyzed in the methane-toluene flame. The oxidation of these substitute species led to cyclopentadienyl radical as observed in a methane-benzene flame.  相似文献   

15.
A system with Li+ ion attachment (IA) ionization has been developed for the direct detection of intermediates formed in burning flames by mass spectrometry. Dimethyl ether (DME) among alternative fuels was selected as a test substance to examine the capability of the system. As a result, intermediates generated in a premixed DME-air flame were directly detectable as Li+ adduct ions. By moving the burner on an X-Y stage, spatial distribution profiles of different species, including unburned DME and formaldehyde, were obtained for three types of flames: diffusion, partially premixed, and premixed.  相似文献   

16.
Decomposition of chlorobenzene as a model molecule of aromatic chlorinated compounds was studied in radiofrequency thermal plasma both in neutral and oxidative conditions. Optical emission spectroscopy was applied for the evaluation of the plasma excitation and molecular rotational-vibrational temperature. Atomic (C, H, O) and molecular (CH, OH, C2) radicals were identified, while the morphology of the formed soot was characterized by electron microscopy. Organic compounds adsorbed on the surface of the soot after plasma processing were comprised of various polycyclic aromatic hydrocarbons (PAH) and chlorinated PAH molecules. Their amount was greatly affected by experimental conditions, especially the oxygen content and plate power. The higher input power reduced the ring number of the PAH molecules. Addition of oxygen significantly reduced the amount of both PAHs chlorinated PAH molecules but enhanced the formation of polychlorinated benzene compounds.  相似文献   

17.
适用于汽油参比燃料TRF的多环芳香烃生成机理   总被引:1,自引:0,他引:1  
构造了一个包括287种组分和1569个反应的汽油参比燃料TRF(toluene reference fuel)燃烧过程中多环芳香烃(PAHs)生成机理的详细化学反应动力学模型,引入四种PAH生长路径将多环芳香烃的生成机理发展到芘A4(C20H12)水平,并通过对PAH产率的分析,指出乙炔(C2H2)、丙炔(C3H3)、乙烯基乙炔(C4H4)以及含有奇数碳原子的环戊二烯自由基(C5H5)和茚基(C9H7)等物质对PAHs生成和生长起到重要作用.该机理可以较准确计算基础燃料(PRF)和TRF火焰的着火延迟期、燃烧火焰中小分子(PAH前驱体C2H2、C3H4等)和PAHs的物质浓度.通过与实验数据的比较表明,该机理在不同温度、压力、化学计量比下具有较好的性能.由此分析,该机理对碳烟前驱物PAHs的预测性能是可靠的.  相似文献   

18.
Potentiometric based electrochemical measurement of diffusion potential at a junction between two flowing flame plasma gases is described. A flame electrochemical cell was constructed using a specially designed burner, which supports two individual flames, each fed by separate premixed methane/oxygen/nitrogen streams. The two flames were in intimate contact, creating a flowing fluid gaseous junction. By aspirating metal salt solutions into these premixed feed gases, the concentration gradient at the interface between the two flames may be controlled. A measurable electrochemical diffusion potential was formed at this junction, the magnitude of which was dependent on the concentration ratio of charged species with different mobilities. In our flame electrolyte, the dominant charged species were atomic or molecular cations and electrons, which have a difference in mobilities of approximately three orders of magnitude. A two-electrode system, in conjunction with a high impedance electrometer was used to measure the potential difference across the flame electrochemical cell. The measured potential difference was analysed using theory developed for the liquid junction potentials by the Henderson equation.  相似文献   

19.
The electron transport properties of polycyclic aromatic hydrocarbons (PAHs) with different numbers of benzene rings tethered to narrow zigzag graphene nanoribbon (ZGNR) electrodes have been investigated. Results show that the transport properties of PAHs are dependent on whether the number of benzene rings in the width direction is odd or even. This effect is strong for narrow width PAHs, but its strength decreases as the width of the PAH is increased. PAHs with an odd number of rings exhibit poor transport properties, whereas the ones having an even number of rings show excellent transport properties coupled with a negative differential resistance (NDR) effect. Moreover, the linkage points and the structure of the molecules have a noticeable effect on the transport properties of the PAH, making the odd-even effect weaker or disappear entirely. Although the PAH with three benzene rings displays poor transport capabilities, it shows excellent rectification behavior compared to the other examined molecules. These studies present a feasible avenue for designing molecular devices with enhanced performance by the careful manipulation of the PAH molecular structure.  相似文献   

20.
In this paper we investigate the linear stability and properties of the travelling premixed combustion waves in a model with two-step chain-branching reaction mechanism in the adiabatic limit in one spatial dimension. It is shown that the Lewis number for fuel has a significant effect on the properties and stability of premixed flames, whereas the Lewis number for the radicals has only quantitative (but not qualitative) effect on the combustion waves. We demonstrate that when the Lewis number for fuel is less than unity the flame speed is unique and is a monotonically decreasing function of the dimensionless activation energy. The combustion wave is stable and exhibits extinction for finite values of activation energy as the flame speed decreases to zero. For fuel Lewis number greater than unity the flame speed is a double-valued function. The slow solution branch is shown to be unstable whereas the fast solution branch is either stable or exhibits the onset of pulsating instabilities via the Hopf bifurcation. The evolution of these instabilities leads to flame extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号