首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
We present a quantitative finite temperature analysis of a recent experiment with Bose-Fermi mixtures in optical lattices, in which the dependence of the coherence of bosons on the interspecies interaction was analyzed. Our theory reproduces the characteristics of this dependence and suggests that intrinsic temperature effects play an important role in these systems. Namely, under the assumption that the ramping up of the optical lattice is an isentropic process, adiabatic temperature changes of the mixture occur that depend on the interaction between bosons and fermions. Matching the entropy of two regimes-no lattice on the one hand and deep lattices on the other-allows us to compute the temperature in the lattice and the visibility of the quasimomentum distribution of the bosonic atoms, which we compare to the experiment.  相似文献   

2.
We derive a dynamical mean‐field theory for mixtures of interacting bosons and fermions on a lattice (BF‐DMFT). The BF‐DMFT is a comprehensive, thermodynamically consistent framework for the theoretical investigation of Bose‐Fermi mixtures and is applicable for arbitrary values of the coupling parameters and temperatures. It becomes exact in the limit of high spatial dimensions d or coordination number Z of the lattice. In particular, the BF‐DMFT treats normal and condensed bosons on equal footing and thus includes the effects caused by their dynamic coupling. Using the BF‐DMFT we investigate two different interaction models of correlated lattice bosons and fermions, one where all particles are spinless (model I) and one where fermions carry a spin one‐half (model II). In model I the local, repulsive interaction between bosons and fermions can give rise to an attractive effective interaction between the bosons. In model II it can also lead to an attraction between the fermions.  相似文献   

3.
P. Vieillefosse 《Physica A》1979,97(3):515-551
The ground state energy, the excitation spectra and the structure factors of weakly coupled mixtures of charged particles (bosons or fermions) are obtained in the well-known framework of the Feynman diagrams. The general theory, which is developed in a first part, is then applied to the three kinds of binary mixtures obtained by combining fermions and bosons.  相似文献   

4.
We study mixtures of spinless bosons and not spin-polarized fermions loaded in two dimensional optical lattices. We approach the problem of the ground state stability within the framework of the linear response theory; by the mean of an iterative procedure, we are able to obtain a relation for the dependence of boson-boson effective interaction on the absolute temperature of the sample. Proceeding from such a formula, we write down analytical expressions for supersolid (SS) and phase separation (PS) transition temperatures, and plot the phase diagrams.  相似文献   

5.
Using the dynamical mean-field theory and the Gutzwiller method, we study the Mott transition in Bose–Fermi mixtures confined in a three-dimensional optical lattice and analyze the effect of fermions on the coherence of bosons. We conclude that increasing fermion composition reduces bosonic coherence in the presence of strong Bose–Fermi interactions and under the condition of the integer filling factors for composite fermions, which consist of one fermion and one or more bosonic holes. Various phases of the mixtures have been demonstrated including phase separation of two species, coexisting regions of superfluid bosons and fermionic liquids, and Mott regions in the phase space spanned by the chemical potentials of the bosons and the fermions.  相似文献   

6.
In this article, we discuss a method to control the long-range interactions between bosons in a three-dimensional Bose-Fermi mixture with the help of optical lattices on fermions. We find the range and the peaked momentum of the fermion-mediated interactions can be tuned by the optical lattice depth and the fermion density. If the fermion density is close to half-filling, roton excitations can be generated with weak Bose-Fermi interactions. Further, if the fermions are not exact at half-filling, multi-roton structure may emerge, implying competing density orders. Therefore, tuning the lattice depth and the fermion density in a Bose-Fermi mixture serves as an effective way to control the interaction range and resonant momentum between bosons.  相似文献   

7.
We evaluate the ground state of a mixture of bosons and spin-polarized fermions in the case of attractive boson-boson interactions, using a variational Ansatz for the Bose condensate wave function and the Thomas-Fermi approximation for the fermions in the mean field of the condensate. Within this approximation we show that the presence of the fermions tends to restrict the metastability range of the condensate, irrespectively of the sign of the boson-fermion interactions. Numerical illustrations are reported for mixtures of 7Li atoms with fermions having the 6Li mass.  相似文献   

8.
Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum-degenerate regime the temperature is a key parameter. We investigate the intrinsic heating and cooling effects due to an entropy-preserving raising of the optical lattice, identify the generic behavior valid for a wide range of parameters, and discuss it quantitatively for the recent experiments with 87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov approximation, including the fermions in a self-consistent mean-field interaction. In the presence of the full three-dimensional lattice, we use a strong coupling expansion. We find the temperature of the mixture in the lattice to be always higher than for the pure bosonic case, shedding light onto a key point in the analysis of recent experiments.  相似文献   

9.
We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with 87Rb-40K mixtures, where a large shift of the critical point has been found.  相似文献   

10.
We present a theoretical study of Bose condensation and specific heat of non-interacting bosons in finite lattices in harmonic potentials in one, two, and three dimensions. We numerically diagonalize the Hamiltonian to obtain the energy levels of the systems. Using the energy levels thus obtained, we investigate the temperature dependence, dimensionality effects, lattice size dependence, and evolution to the bulk limit of the condensate fraction and the specific heat. Some preliminary results on the specific heat of fermions in optical lattices are also presented. The results obtained are contextualized within the current experimental and theoretical scenario.  相似文献   

11.
马永利 《中国物理快报》2004,21(12):2355-2358
In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.  相似文献   

12.
We have studied mixtures of fermionic (40)K and bosonic (87)Rb quantum gases in a three-dimensional optical lattice. We observe that an increasing admixture of the fermionic species diminishes the phase coherence of the bosonic atoms as measured by studying both the visibility of the matter wave interference pattern and the coherence length of the bosons. Moreover, we find that the attractive interactions between bosons and fermions lead to an increase of the boson density in the lattice which we measure by studying three-body recombination in the lattice. In our data, we do not observe three-body loss of the fermionic atoms. An analysis of the thermodynamics of a noninteracting Bose-Fermi mixture in the lattice suggests a mechanism for sympathetic cooling of the fermions in the lattice.  相似文献   

13.
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting ferrnions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mort-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.  相似文献   

14.
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.  相似文献   

15.
Using a functional renormalization group approach we study the zero temperature phase diagram of two-dimensional Bose-Fermi mixtures of ultracold atoms in optical lattices, in the limit when the velocity of bosonic condensate fluctuations is much larger than the Fermi velocity. For spin-1/2 fermions we obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry (s, p, and d) and antiferromagnetic order. We determine the value of the gaps of various phases close to half filling, and identify subdominant orders as well as short-range fluctuations from the renormalization group flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.  相似文献   

16.
We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.  相似文献   

17.
We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms.  相似文献   

18.
《Nuclear Physics B》1986,273(1):137-156
We consider the consequences of the anomalous Ward identities when both Goldstone bosons and massless fermions appear as low-energy degress of freedom in confining theories. A general procedure for evaluating the anomalous vertices of the Goldstone bosons is given. We show that these vertices can be described in a compact way. The emerging structures have an intrinsic geometrical meaning. Some particular features occuring when the massless fermions are superpartners of the Goldstone bosons are illustrated on the example of supersymmetric QCD.  相似文献   

19.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

20.
Radiative effects are shown to cause breakdown of the semiclassical ground state in a massless theory of fermions and spinless bosons when the coupling of fermions to bosons is larger than the boson self-coupling. Supersymmetry forms the boundary, in coupling constant space, separating theories with and without stable semiclassical vacua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号