首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The dynamic response of fully premixed flames stabilized in strongly swirled flows undergoing vortex breakdown is investigated with axisymmetric unsteady RANS simulations. The analysis relies on the well known Helmholtz-Hodge decomposition of the velocity field into its irrotational and rotational components. A novel methodology based on the linearization of the progress variable transport equation is developed to determine the separate contribution of these velocity components to the Flame Transfer Function (FTF). Due to the phase delay between the convected tangential velocity and instantaneously propagating axial velocity perturbations, a non-monotonic frequency dependence of the swirl number amplitude downstream the swirl generator is detected. In line with experimental observations, such non-monotonic frequency dependence is found also for the amplitude and phase of the FTF. This behaviour is associated here with rotational velocity perturbations generated by the Central Recirculation Zone (CRZ) generated by the phenomenon of vortex breakdown which, responding in a fashion totally similar to the swirl number perturbation, produces flame surface area fluctuations with the same distribution versus frequency.  相似文献   

2.
3.
This paper describes an experimental study investigating the non-linear response of lean premixed air/ethylene flames to strong inlet velocity perturbations of two frequencies. The combustor has a centrally-placed bluff body and a short quartz section. The annulus between the bluff body and the flow tube, which also housed the acoustic pressure transducers, allowed the reactants into the combustor. The inlet flow was perturbed using loudspeakers. High speed laser tomography, OH* chemiluminescence and OH Planar Laser Induced Fluorescence (PLIF) have been used for flow visualization, heat release and flame surface density (FSD) measurements respectively. The heat release fluctuations increased initially linearly with inlet velocity amplitude for a single frequency forcing, with saturation occurring after forcing amplitudes of around 15% of the bulk velocity, which was found to occur due to vortex roll up and subsequent flame annihilation. The introduction of energy at the second frequency (i.e, the harmonic) was found to change the vortex formation and shedding frequency, depending on the level of forcing. This resulted in a non-linear flame response transfer function (defined as the amplitude of unsteady heat release divided by the amplitude of velocity perturbation at the fundamental) whose amplitude depended greatly on the amount of harmonic content present in the perturbations. The introduction of higher harmonics reduced the flame annihilation events, which are responsible for saturation, thus reducing non-linearity in the amplitude dependence of the flame response. These results were further verified using sequential time-resolved OH PLIF measurements. The findings from this study suggest that the acoustic response of the flame was mostly due to flame area variation effected by modulation of the annular jet and evolution of the shear layers.  相似文献   

4.
In this paper, a novel model for turbulent premixed combustion in the corrugated flamelet regime is presented, which is based on transporting a joint probability density function (PDF) of velocity, turbulence frequency and a scalar vector. Due to the high dimensionality of the corresponding sample space, the PDF equation is solved with a Monte-Carlo method, where individual fluid elements are represented by computational particles. Unlike in most other PDF methods, the source term not only describes reaction rates, but accounts for “ignition” of reactive unburnt fluid elements due to propagating embedded quasi laminar flames within a turbulent flame brush. Unperturbed embedded flame structures and a constant laminar flame speed (as expected in the corrugated flamelet regime) are assumed. The probability for an individual particle to “ignite” during a time step is calculated based on an estimate of the mean flame surface density (FSD), latter gets transported by the PDF method. Whereas this model concept has recently been published [21], here, a new model to account for local production and dissipation of the FSD is proposed. The following particle properties are introduced: a flag indicating whether a particle represents the unburnt mixture; a flame residence time, which allows to resolve the embedded quasi laminar flame structure; and a flag indicating whether the flame residence time lies within a specified range. Latter is used to transport the FSD, but to account for flame stretching, curvature effects, collapse and cusp formation, a mixing model for the residence time is employed. The same mixing model also accounts for molecular mixing of the products with a co-flow. To validate the proposed PDF model, simulation results of three piloted methane-air Bunsen flames are compared with experimental data and very good agreement is observed.  相似文献   

5.
Flow structure of premixed propane–air swirling jet flames at various combustion regimes was studied experimentally by stereo PIV, CH* chemiluminescence imaging, and pressure probe. For the non-swirling conditions, a nonlinear feedback mechanism of the flame front interaction with ring-like vortices, developing in the jet shear layer, was found to play important role in the stabilisation of the premixed lifted flame. For the studied swirl rates (S = 0.41, 0.7, and 1.0) the determined domain of stable combustion can be divided into three main groups of flame types: attached flames, quasi-tubular flames, and lifted flames. These regimes were studied in details for the case of S = 1.0, and the difference in the flow structure of the vortex breakdown is described. For the quasi-tubular flames an increase of flow precessing above the recirculation zone was observed when increased the stoichiometric coefficient from 0.7 to 1.4. This precessing motion was supposed to be responsible for the observed increase of acoustic noise generation and could drive the transition from the quasi-tubular to the lifted flame regime.  相似文献   

6.
A sub-grid scale (SGS) combustion model by combining dynamic thickened flame (DTF) with flamelet generated manifolds (FGM) tabulation approach (i.e. DTF-FGM) is developed for investigating turbulent premixed combustion. In contrast to the thickened flame model, the dynamic thickening factor of the DTF model is determined from the flame sensor, which is obtained from the normalized gradient of the reaction progress variable from the one-dimensional freely propagating premixed flame simulations. Therewith the DTF model can ensure that the thickening of the flame is limited to the regions where it is numerically necessary. To describe the thermo-chemistry states, large eddy simulation (LES) transport equations for two characteristic scalars (the mixture fraction and the reaction progress variable) and relevant sub-grid variances in the DTF-FGM model are presented. As to the evaluation of different SGS combustion models, another model by utilizing the combination of presumed probability density function (PPDF) and FGM (i.e. PPDF-FGM) is also described. LES of two cases with or without swirl in premixed regime of the Cambridge swirl burner flames are performed to evaluate the developed SGS combustion model. The predicted results are compared with the experimental data in terms of the influence of different LES grids, model sensitivities to the thickening factor, the wrinkling factor, and the PPDF of characteristic scalars, the evaluation of different modelling approaches for the sub-grid variances of characteristic scalars, and the predictive capability of different SGS combustion models. It is shown that the LES results with the DTF-FGM model are in reasonable agreement with the experimental data, and better than the results with the PPDF-FGM approach due to its ability to predict better in regions where flame is not resolved.  相似文献   

7.
Transition from gradient to countergradient scalar transport in a statistically planar, one-dimensional, developing, premixed turbulent flame is studied both theoretically and numerically. A simple criterion of the transition referred to is derived from the balance equation for the combustion progress variable, with the criterion highlighting an important role played by flame development. A balance equation for the difference in velocities $\bar{u}_b$ and $\bar{u}_u$ conditioned on burned and unburned mixture, respectively, is numerically integrated. Both analytical and computed results show that; (1) The flux $\overline{\rho u'' c''}$ is gradient during an early stage of flame development followed by transition to countergradient scalar transport at certain instant t tr . (2) The transition time is increased when turbulence length scale L is increased or when the laminar flame speed S L and/or the density ratio are decreased. (3) The transition time normalized using the turbulence time scale is increased by u??. Moreover, the numerical simulations have shown that the transition time is increased by u?? if a ratio of u??/S L is not large. This dependence of t tr on u?? is substantially affected by (i) the mean pressure gradient induced within the flame due to heat release and (ii) by the damping effect of combustion on the growth rate of mean flame brush thickness. The reasonable qualitative agreement between the computed trends and available experimental and DNS data, as well as the agreement between the computed trends and the present theoretical results, lends further support to the conditioned balance equation used in the present work.  相似文献   

8.
Topology and brush thickness of turbulent premixed V-shaped flames were investigated using Mie scattering and Particle Image Velocimetry techniques. Mean bulk flow velocities of 4.0, 6.2, and 8.3 m/s along with two fuel-air equivalence ratios of 0.6 and 0.7 were tested in the experiments. Using a novel experimental turbulence generating apparatus, three turbulence intensities of approximately 2 %, 6 %, and 17 % were tested in the experiments. The results show that topology of the flame front is significantly altered by changing the turbulence intensity. Specifically, at relatively small turbulence intensities, the flame fronts feature wrinkles which are symmetric with respect to the vertical axis. At moderate values of turbulence intensities, the flame fronts form cusps. The formation of cusps is more pronounced at large mean bulk flow velocities. The results associated with relatively large turbulence intensity show that flame surfaces feature: mushroom-shaped structures, freely propagating sub-flames, pocket formation, localized extinction, and horn-shaped structures. Analysis of the results show that the flame brush thickness follows a linear correlation with the root-mean-square of the flame front position. The correlation is in agreement with the results of past experimental investigations associated with moderately turbulent premixed V-shaped flames, and holds for the range of turbulence conditions tested. This suggests that the underlying mechanism associated with the dynamics of moderately turbulent premixed V-shaped flames proposed in past studies can potentially be valid for the the wide range of turbulence conditions examined in the present investigation.  相似文献   

9.
This large eddy simulation (LES) study is applied to three different premixed turbulent flames under lean conditions at atmospheric pressure. The hierarchy of complexity of these flames in ascending order are a simple Bunsen-like burner, a sudden-expansion dump combustor, and a typical swirl-stabilized gas turbine burner–combustor. The purpose of this paper is to examine numerically whether the chosen combination of the Smagorinsky turbulence model for sgs fluxes and a novel turbulent premixed reaction closure is applicable over all the three combustion configurations with varied degree of flow and turbulence. A quality assessment method for the LES calculations is applied. The cold flow data obtained with the Smagorinsky closure on the dump combustor are in close proximity with the experiments. It moderately predicts the vortex breakdown and bubble shape, which control the flame position on the double-cone burner. Here, the jet break-up at the root of the burner is premature and differs with the experiments by as much as half the burner exit diameter, attributing the discrepancy to poor grid resolution. With the first two combustion configurations, the applied subgrid reaction model is in good correspondence with the experiments. For the third case, a complex swirl-stabilized burner–combustor configuration, although the flow field inside the burner is only modestly numerically explored, the level of flame stabilization at the junction of the burner–combustor has been rather well captured. Furthermore, the critical flame drift from the combustor into the burner was possible to capture in the LES context (which was not possible with the RANS plus kɛ model), however, requiring tuning of a prefactor in the reaction closure.  相似文献   

10.
11.
Large eddy simulation (LES) models for flamelet combustion are analyzed by simulating premixed flames in turbulent stagnation zones. ALES approach based on subgrid implementation of the linear eddy model(LEM) is compared with a more conventional approach based on the estimation of the turbulent burning rate. The effects of subgrid turbulence are modeled within the subgrid domain in the LEM-LES approach and the advection (transport between LES cells) of scalars is modeled using a volume-of-fluid (VOF) Lagrangian front tracking scheme. The ability of the VOF scheme to track the flame as a thin front on the LES grid is demonstrated. The combined LEM-LES methodology is shown to be well suited for modeling premixed flamelet combustion. The geometric characteristics of the flame surfaces, their effects on resolved fluid motion and flame-turbulence interactions are well predicted by the LEM-LES approach. It is established here that local laminar propagation of the flamelets needs to be resolved in addition to the accurate estimation of the turbulent reaction rate. Some key differences between LEM-LES and the conventional approach(es) are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement a transported Probability Density Function modelling framework into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid should resolve flame-like structures that arise from solution of the Stochastic Fields equation. Through analysis of Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is shown that the flame-like structures in the Stochastic Fields simulations can be orders of magnitude narrower than the LES filter length scale. The under-resolution is worst for low Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures is on the order of the laminar flame thickness. The effect of resolution on LES predictions is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect of refining the grid spacing and filter length scale independently. The usual practice of setting the LES filter length scale equal to grid spacing leads to severe under-resolution and numerical thickening of the flame, and to substantial error in the turbulent flame speed. The numerical resolution required for accurate solution of the Stochastic Fields equations is prohibitive for many practical applications involving high-pressure premixed combustion. This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic Fields simulations.  相似文献   

13.
The one-dimensional turbulence (ODT) model, formulated in an Eulerian reference frame, is applied to a temporally-evolving premixed turbulent hydrogen plane-jet flame and results are compared with direct numerical simulation (DNS) data. This is the first published study to perform direct comparisons of ODT to DNS for premixed flames. The ODT model solves the full set of conservation equations for mass, momentum, energy, and species on a one-dimensional domain corresponding to the transverse jet direction. The effects of turbulent mixing are modeled via a stochastic process, while the full range of diffusive-reactive length and time scales are resolved directly on the one-dimensional domain. A detailed chemical mechanism for hydrogen combustion consisting of 9 species and 21 reactions and a mixture-averaged transport model are used (consistent with the DNS). Cases with two different Damköhler numbers are considered and comparisons between the ODT and DNS data are shown with respect to flow dynamics and thermochemistry. The ODT compared favorably with the DNS in terms of the overall entrainment as judged by the streamwise velocity profile and in terms of local flamelet structure as judged by progress-variable conditional reaction and scalar dissipation rates. While the ODT agreed qualitatively with the overall flame evolution, the net fuel consumption rate was somewhat over-predicted for a brief early period and under-predicted later on, leading to an overly long flame burnout time. It was demonstrated that adjusting a parameter controlling the selection of large eddies improved the prediction of the peak fuel consumption rate and overall reaction progress but worsened the prediction of jet entrainment. An analysis of the 1D nature of ODT is presented that suggests the FSD in ODT needs to be much higher than the FSD in the DNS in order to achieve the same overall burning rate, suggesting that the FSD is under-predicted by a significant fraction. While the success of the ODT in reproducing many of the salient features of nonpremixed flames has been demonstrated, the current study suggests that improvements are needed when applied to premixed flames. It is also important to note that the DNS required approximately 40×106 CPU hours while the ODT required approximately 103 CPU hours.  相似文献   

14.
Simulations of turbulent CH4-air counterflow flames are presented, obtained in terms of zero and two-dimensional first-order Conditional Moment Closure (CMC) to study the flame structure and extinction limits. The CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using a commercial CFD software employing a Reynolds stress turbulence model and additional transport equations for the turbulent scalar flux and for the mean scalar dissipation rate. Two detailed chemical mechanisms and different conditional scalar dissipation rate models have been examined and small differences were found.The first-order CMC captures the overall structure of the counterflow flame accurately for the unconditional averages. The calculated conditional averages behave as if the scalar dissipation rate were under-predicted, although a comparison with measurement of the conditional scalar dissipation rate is reasonable. The calculated extinction velocity is found to be much higher than the experimental value, but the trend of increasing extinction velocity with air dilution of the fuel stream is captured well. The discrepancies with the data are mostly attributed to the neglect of conditional fluctuations.  相似文献   

15.
The modelling of conditional scalar dissipation in locally self-similar turbulent reacting jets is considered. The streamwise dependence in the transport equation of the conserved scalar pdf is represented by a function solely dependent on centreline mixture fraction. This procedure provides a simple model suitable for non-homogeneous flows and ensures positive values for conditional scalar dissipation. It has been tested in pure hydrogen-air jet diffusion flames using a Conditional Moment Closure method with detailed 12species, 23 reactions chemistry. The calculations show good agreement of the averaged scalar dissipation with reference values and the model proves to be superior to previous models based on homogeneous flows if the distribution of the conditional scalar dissipation in mixture fraction space is compared with experimental results. A dependence of NO predictions on the model of conditional scalar dissipation can be observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Simultaneous high repetition-rate, two-point hydroxyl (OH) time-series measurements with associated PLIF/PIV measurements are employed to investigate spatio–temporal scales and flame-velocity interactions in turbulent opposed jets sustaining methane-air double flames. For a fuel-side equivalence ratio, ϕ B  = 1.2, a rich premixed flame exists on the fuel side while a diffusion flame exists on the air side of the stagnation plane. The bulk Reynolds number (Re) and strain rate (SR) can be adjusted to generate flames at ϕ B  = 1.2 with both well separated and completely merged flame fronts. Simultaneous PLIF/PIV measurements highlight distinct spatial OH structures of the premixed and diffusive fronts corresponding to variations in the flow field. The self-propagating tendency of the rich premixed front causes large-scale wrinkling, thereby enhancing the OH contour length by 15% as compared to the diffusive front. Two-point OH time-series measurements are implemented to quantify both spatial and temporal fluctuations via study of radial length and time scales. In general, these integral length and time scales follow similar trends and reach a minimum at the axial location of peak [OH]. In comparison to merged double flames having higher Re and SR, greater OH fluctuations are observed in the rich-premixed front as compared to the diffusive front for a well separated double flame. Because of the developing turbulence, the OH length scales exhibit reduced axial gradients across the reaction zone for higher Re in comparison to lower Re. A stochastic time-series simulation, using a state relationship based on a joint mixture fraction and progress variable, is utilized to extract estimated scalar time scales from those of measured OH. The simulations indicate that the hydroxyl fluctuations in double flames are only twice those of the underlying conserved scalar. “Turbulent Opposed-Jet Double Flames” is submitted for consideration as a full length article to Flow Turbulence and Combustion.  相似文献   

17.

The modelling of scalar dissipation rate in conditional methods for large-eddy simulations is investigated based on a priori direct numerical simulation analysis using a dataset representing an igniting non-premixed planar jet flame. The main objective is to provide a comprehensive assessment of models typically used for large-eddy simulations of non-premixed turbulent flames with the Conditional Moment Closure combustion model. The linear relaxation model gives a good estimate of the Favre-filtered scalar dissipation rate throughout the ignition with a value of the related constant close to the one deduced from theoretical arguments. Such value of the constant is one order of magnitude higher than typical values used in Reynolds-averaged approaches. The amplitude mapping closure model provides a satisfactory estimate of the conditionally filtered scalar dissipation rate even in flows characterised by shear driven turbulence and strong density variation.

  相似文献   

18.
Detailed-chemistry DNS studies are becoming more common due to the advent of more powerful modern computer architectures, and as a result more realistic flames can be simulated. Such flames involve many alternative fuels such as syngas and blast furnace gas, which are usually composed of many species and of varying proportions. In this study, we evaluate whether some of the commonly used models for the scalar dissipation rate and flame surface density can be used to model such flames in the LES context. A priori assessments are conducted using DNS data of multi-component fuel turbulent premixed flames. These flames offer unique challenges because of their complex structure having many distinct consumption layers for the different fuel components unlike in a single-component fuel. Some of the models tested showed good agreement with the DNS data and thus they can be used for the multi-component fuel combustion.  相似文献   

19.
Turbulent premixed flames exhibit different structural and propagation characteristics with increasing upstream turbulence intensity starting from thin wrinkled flames in the Corrugated Flamelet regimes to a flame with a thicker preheat zone in the Thin Reaction Zone Regime (TRZ) and finally, becoming more disorganized or broken in the Distributed or Broken Reaction Zone (D/BRZ) regimes under intense turbulence. A single comprehensive predictive model that can span all regimes does not currently exist, and in this study we explore the ability of the stand-alone one-dimensional linear-eddy mixing (LEM) model to simulate the flames in all these regimes. Past applications of this 1DLEM model have demonstrated reasonable predictions in the flamelet and TRZ regimes and here, new experiments in the TRZ regime are specifically addressed to evaluate the predictive capability of this model. Additional simulations in the D/BRZ regimes (where no data is currently available) are performed to determine if the model can be extended to the high turbulence regime. Comparison with the data in the TRZ regime shows satisfactory agreement. Analysis suggests varying levels of preheat zone broadening in all the TRZ and D/BRZ cases. While the average heat release distribution for the TRZ cases is nearly identical to the laminar unstrained baseline, changes to the species and heat release distribution are observed only at a high Karlovitz Number K a > 103. In the D/BRZ regime it is shown that the transition is related to enhanced turbulent diffusion that dominates molecular diffusion effects causing deviations from the laminar baseline.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号