首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work examines the flux performance of organic solvents through a polydimethylsiloxane (PDMS) composite membrane. A selection of n-alkanes, i-alkanes and cyclic compounds were studied in deadend permeation experiments at pressures up to 900 kPa to give fluxes for pure solvents and mixtures between 10 and 100 l m−2 h−1. Results for the chosen alkanes and aromatics, and subsequent modelling using the Hagen–Poiseuille equation, suggest that solvent transport through PDMS can be successfully interpreted via a predominantly hydraulic mechanism. It is suggested that the mechanism has a greater influence at higher pressures and the modus operandi is supported by the non-separation of binary solvent mixtures and a dependency on viscosity and membrane thickness. The effects of swelling that follow solvent–membrane interactions show that the relative magnitudes of the Hildebrand solubility parameter for the active membrane layer and the solvent(s) are a good indicator of permeation level. Solvents constituting a group (e.g. all n-alkanes) induced similar flux behaviours when corrections were made for viscosity and affected comparable swelling properties in the PDMS membrane layer.  相似文献   

2.
An crosslinked polyethylene glycol (PEG) membrane was prepared for fluid catalytic cracking (FCC) gasoline desulfurization. Sulfur enrichment factor come to 4.75 and 3.51 for typical FCC gasoline feed with sulfur content of 238.28 and 1227.24 μg/g, respectively. Pervaporation performance of membranes kept stable within the long time run of 500 h, which indicated that crosslinked PEG membranes had the property of resisting pollution. Judging from chromatographic analysis, the membranes were more efficient for thiophene species. Effects of operation conditions including permeate pressure, feed temperature, feed flow rate and feed sulfur content level on the pervaporation performance were investigated. Permeation flux decreased with increasing permeate pressure while increased with the operating temperature increase. Sulfur enrichment factor increased firstly and decreased then when permeate pressure and temperature rose. The peak value occurred at 10.5 mm Hg and 358 K for model compounds feed (378 K for FCC gasoline feed). Arrhenius relationship existed between flux and operating temperature. Both sulfur enrichment factor and flux were shown to increase with increasing feed flow rate. Permeation flux increased while sulfur enrichment factor decreased as the feed sulfur content increased, but the influence of increasing sulfur content on pervaporation performance weakened when sulfur content come to 600 μg/g.  相似文献   

3.
Gasoline desulfurization by membrane processes is a newly emerged technology, which has provided an efficient new approach for sulfur removal and gained increasing attention of the membrane and petrochemical field. A deep understanding of the solution/diffusion of gasoline molecules on/in the membrane can provide helpful information in improving or optimizing membrane performance. In this study, a desulfurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of sorption and diffusion behavior of typical sulfur and hydrocarbon species through PEG membranes. A solution–diffusion model based on UNIFAC and free volume theory has been established. Pervaporation (PV) and sorption experiments were conducted to compare with the model calculation results and to analyze the mass transport behavior. The dynamic sorption curves for pure components and the sorption experiments for binary mixtures showed that thiophene, which had a higher solubility coefficient than n-heptane, was the preferential sorption component, which is key in the separation of thiophene/hydrocarbon mixtures. In all cases, the model calculation results fit well the experimental data. The UNIFAC model was a sound way to predict the solubility of solvents in membranes. The established model can predict the removal of thiophene species from hydrocarbon compounds by PEG membranes effectively.  相似文献   

4.
Solubility measurements of sulfur compounds in supercritical fluids are required in order to determine the feasibility of supercritical extraction for removing them from gasoline and diesel fuel. In this work, solubility of thiophene in CO2 and in CO2 + 1-propanol mixtures were measured from 313 to 363 K using an apparatus based on the static–analytical method. Vapor–liquid equilibria (VLE) data of binary mixtures were fitted to the Peng–Robinson equation of state (EoS) with classical mixing rules. The binary interaction parameters (kij) obtained were used to predict the VLE data of ternary systems. The calculated values given by this simple model agree well to the experimental data.  相似文献   

5.
Positron annihilation lifetime spectroscopy was used to observe the effects of argon intercalation in some solid long-chain alkanes at high pressure. The ortho-Ps lifetime rises with argon pressure, which means increase of free volumes in the alkane structure. The range of pressures in which the rotator phase exists increases, comparing to pure alkane. In n-heptadecane, n-nonadecane, and possibly n-heneicosane, a stepwise change of ortho-Ps lifetime and intensity at ≈12 MPa is observed, suggesting the transition to a new kind of the rotator phase. The transition rate is low, final lifetime value is ≈3.3 ns. Despite a large size of free volumes corresponding to such a lifetime, their compressibility is found negligible up to the pressure of 90 MPa. At low pressures the compressibility of free volumes in the rotator phase is negative.  相似文献   

6.
活性炭及甲酸催化过氧化氢氧化噻吩脱硫研究   总被引:19,自引:2,他引:17  
以噻吩代表汽油中的有机硫化合物,将其溶解于正辛烷配制成反应原料,考察了活性炭对噻吩的吸附脱硫情况,研究了质量分数为30%的过氧化氢水溶液为氧化剂,在活性炭和甲酸的催化作用下,反应原料中噻吩氧化脱硫。考察了活性炭的催化性能及反应条件对其催化性能的影响。实验结果表明,30%H2O2-HCOOH-AC(活性炭)三元体系产生的过氧甲酸和羟基自由基能将模型有机硫化合物氧化,噻吩的氧化脱硫率可达到85%以上;活性炭和甲酸的催化氧化性能明显优于单纯使用甲酸催化性能。甲酸浓度、活性炭加入量、过氧化氢初始浓度及温度对噻吩硫的氧化脱除均有影响。  相似文献   

7.
Isobaric vapor–liquid equilibrium data have been experimentally determined at 101.3 kPa for the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate. No azeotrope was found in any of the systems. All the experimental data reported were thermodynamically consistent according to the point-to-point method of Fredenslund. The activity coefficients were correlated with the NRTL and UNIQUAC liquid-phase equations and the corresponding binary interaction parameters are reported. The densities and derived excess volumes for the three mixtures are also reported at 298.15 K.  相似文献   

8.
Pervaporation (PV) separation of water + isopropanol and water + 1,4-dioxane mixtures has been attempted using the blend membranes of poly(vinyl alcohol) (PVA) with 5 wt.% of poly(methyl methacrylate) (PMMA). These results have been compared with the plain PVA membrane. Both plain PVA and PVA/PMMA blend membranes have been crosslinked with glutaraldehyde in an acidic medium. The membranes were characterized by differential scanning calorimetry and universal testing machine. Pervaporation separation experiments have been performed at 30 °C for 10, 15, 20, 30 and 40 wt.% of feed water mixtures containing isopropanol as well as 1,4-dioxane. PVA/PMMA blend membrane has shown a selectivity of 400 for 10 wt.% of water in water + isopropanol feed, while for water + 1,4-dioxane feed mixture, membrane selectivity to water was 104 at 30 °C. For both the feed mixtures, selectivity for the blend membrane was higher than that observed for plain PVA membrane, but flux of the blend membrane was lower than that observed for the plain PVA membrane. Membranes of this study are able to remove as much as 98 wt.% of water from the feed mixtures of water + isopropanol, while 92 wt.% of water was removed from water + 1,4-dioxane feed mixtures at 30 °C. Flux of water increased for both the feed mixtures, while the selectivity decreased at higher feed water concentrations. The same trends were observed at 40 and 50 °C for 10, 15 and 20 wt.% of water mixtures containing isopropanol as well as 1,4-dioxane feed mixtures, which also covered their azeotropic composition ranges. Membrane performance was studied by calculating flux (Jp), selectivity (), pervaporation separation index (PSI) and enrichment factor (β). Permeation flux followed the Arrhenius trend over the range of temperatures investigated. It was found that by introducing a hydrophobic PMMA polymer into a hydrophilic PVA, the selectivity increased dramatically, while flux decreased compared to plain PVA, due to a loss in PVA chain relaxation.  相似文献   

9.
In this work, we present the behavior of solid monolayers of binary mixtures of alkanes and alcohols adsorbed on the surface of graphite from their liquid mixtures. We demonstrate that solid monolayers form for all the combinations investigated here. Differential scanning calorimetry (DSC) is used to identify the surface phase behavior of these mixtures, and elastic neutron incoherent scattering has been used to determine the composition of the mixed monolayers inferred by the calorimetry. The mixing behavior of the alcohol/alkane monolayer mixtures is compared quantitatively with alkane/alkane and alcohol/alcohol mixtures using a regular solution approach to model the incomplete mixing in the solid monolayer with preferential adsorption determining the surface composition. This analysis indicates the preferential adsorption of alcohols over alkanes of comparable alkyl chain length and even preferential adsorption of shorter alcohols over longer alkanes, which contrasts strongly with mixtures of alkane/alkane and alcohol/alcohol of different alkyl chain lengths where the longer homologue is always found to preferentially adsorb over the shorter. The alcohol/alkane mixtures are all found to phase separate to a significant extent in the adsorbed layer mixtures even when molecules are of a similar size. Again, this contrasts strongly with alkane/alkane and alcohol/alcohol mixtures where, although phase separation is found for molecules of significantly different size, good mixing is found for similar size species.  相似文献   

10.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in hydrocarbons/binary surfactant mixtures/brine systems. The dynamic interfacial tensions between hydrocarbons of different alkane carbon numbers (from 6 to 14) and solutions of binary surfactant mixtures were measured. We found that the synergism/antagonism for interfacial tension reduction in binary surfactant mixtures having low interfacial tension values was influenced by the alkane carbon number of oil phase, hydrophilic-lipophilic ability of surfactant, and NaCl concentration. A new explanation in view of interactions among surfactant molecules, oil molecules, and water molecules is provided.  相似文献   

11.
Crosslinked PDMS/PEI composite membranes were prepared, in which asymmetric PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat-plate composite membrane. The different function composition of the PDMS/PEI composite membranes were characterized by reflection FTIR. The surface and section of PDMS/PEI composite membranes were investigated by scanning electron microscope (SEM). The infinite dilute activity and diffusion coefficients of thiophene, 2-methyl thiophene, 2,5-dimethyl thiophene, n-butyl mercaptan, n-butyl sulfide in crosslinked PDMS were measured in the temperature range of 80–100 °C by inverse gas chromatography. The solubility parameters of thiophene, 2-methyl thiophene, 2,5-dimethyl thiophene, n-butyl mercaptan, n-butyl sulfide were calculated by the group contribution method and the selectivity of PDMS composite membrane for different organic sulfur compounds was investigated. The composite membranes prepared in this work were employed in pervaporation separation of n-heptane and different sulfur forms mixtures. The theoretical results showed good agreement with the experimental results, and the order of partial permeate flux and selectivity for different organic sulfur compounds was: thiophene > 2-methylthiophene > 2,5-dimethylthiophene > n-butyl mercaptan > n-butyl sulfide, which should be significant for practical application.  相似文献   

12.
Sodium alginate and hydroxyethylcellulose blend membranes were prepared by solution casting, crosslinked with glutaraldehyde and urea–formaldehyde–sulfuric acid mixture. Crosslinking was confirmed by Fourier transform infrared spectroscopy, while the blend compatibility was studied by differential scanning calorimetry and scanning electron microscopy. Membranes were tested for pervaporation separation of feed mixtures ranging from 10 to 50 mass% water in water + 1,4-dioxane and water + tetrahydrofuran mixtures at 30 °C. For 10 mass% of the feed mixture, pervaporation experiments were also carried out at higher temperatures (40 and 50 °C). By increasing the temperature, a slight increase in flux with a considerable decrease in selectivity was observed for all the membranes and for both the mixtures. The blend membranes exhibited different pervaporation performance for both the binary mixtures investigated. For water + 1,4-dioxane mixture, the pervaporation performance did not improve much after blending, whereas for water + tetrahydrofuran mixture, the pervaporation performance has improved considerably over that of plain sodium alginate membrane.  相似文献   

13.
Intrinsic viscosities, [η], second virial coefficients, A2, and preferential solvation coefficients, λ, for the ternary systems n-alkane (l)-butanone (2)-poly(dimethylsiloxane) (PDMS) (3), with n-alkane = n-hexane, n-heptane, n-nonane and n-undecane, have been determined at 20°. The K and a constants of the Mark-Houwink equation have been evaluated over the whole composition range of the binary solvent mixtures. Polymer (mixed solvent) interaction parameters and unperturbed dimensions have been evaluated both from A2 and [η] data, the feasibility of A2 evaluation from [η] experimental data or vice versa being discussed. Experimental and calculated (through Dondos and Patterson theory) excess free energies, GE, follow similar trends with composition; large numerical discrepancies, however, arise between both sets of GE. Maxima in [η], in a and in A2 are accompanied by inversion points in λ. The solvent mixture composition range in which PDMS is preferentially solvated by n-alkane, as well as the extent of solvation, decrease with increasing number of carbon atoms in the n-alkane.  相似文献   

14.
Microporous carbon membranes were prepared on an -alumina support by a pyrolysis of cationic tertiary amine/anionic polymer composites. The precursor solutions contain a thermosetting resorcinol/formaldehyde (RF) polymer and a cationic tertiary amine. Three types of cationic tertiary amines with different chain lengths were used, such as tetramethlammonium bromide (TMAB), tetrapropylammonium bromide (TPAB) and cetyltrimethylammonium bromide (CTAB). A porous structure was produced by a decomposition of the amine and the resulting pores assisted the further gasification of the RF polymer at high temperature. The carbon/alumina membranes have thin and continuous carbon top layers with a thickness of 1 μm. Gas permeation tests were performed using single gases of CO2, O2, N2, CF4, n-C4H10 and i-C4H10, as well as binary mixtures of CH4/n-C4H10 and N2/CF4 at different temperatures between 23 and 150 °C. The carbon membrane prepared using TMAB showed separation factors higher than 650 for the CH4/n-C4H10 mixtures and higher than 8100 for the N2/CF4 mixture. From the permeation of pure gases with different molecular sizes, the pore sizes of the carbon membrane prepared using TMAB, TPAB and CTAB are estimated to be 4.0, 5.0 and larger than 5.5 Å, respectively, indicating that the micropore size of the carbon membranes is controllable by using different amines.  相似文献   

15.
New molecular and thermal diffusion coefficients of binary mixtures of normal decane-normal alkanes and methylnaphthalene-normal alkanes are measured at atmospheric pressure and T = 25 degrees C. The normal alkanes used in this work include nC5-nC20. Thermal diffusion coefficients were measured in a thermogravitational column. Molecular diffusion coefficients were measured using an open-ended capillary tube technique. Results show a significant effect of molecular shape and size on thermal and molecular diffusion coefficients. Molecular diffusion coefficients show a monotonic behavior in both aromatic-normal alkane and normal decane-normal alkane mixtures. Thermal diffusion coefficients reveal a nonmonotonic trend with molecular size in the normal decane-normal alkane mixtures. This is the first report of the nonmonotonic behavior in the literature. The data presented in this paper provide an accurate self-molecular diffusion coefficient for nC10 from binary data.  相似文献   

16.
Blend membranes of poly(vinyl alcohol) (PVA) and nylon 66 (NYL) were synthesized and crosslinked with glutaraldehyde (GA) and assessed for their suitability in dehydrating 2-butanol by pervaporation (PV). These blends were subjected to sorption studies to determine the extent of interaction and degree of swelling in pure liquids as well as binary mixtures. Wide-angle X-ray diffraction (WAXD) and thermal gravimetric analysis (TGA) were carried out to investigate changes in crystallinity and thermal stability, respectively. The effect of experimental parameters such as feed water concentration, permeate pressure and barrier thickness on membrane flux and selectivity was evaluated. The membranes were found to have good potential for breaking the azeotrope of 27.6 wt.% water with a flux of 3.07 kg/m2 h 10 μm and selectivity of 26.5. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas opposite trends were observed in case of flux. Higher permeate pressure caused a reduction in both flux and selectivity. These effects were clearly elucidated.  相似文献   

17.
Viscosities of the ternary system n-hexane+1,3-dioxolane+1-butanol and the binary system n-hexane+1,3-dioxolane have been measured at atmospheric pressure at 298.15 and 313.15 K. Viscosity deviations for the binary and ternary systems were calculated from experimental data and fitted to Redlich–Kister and Cibulka equations, respectively. The group contribution method proposed by Wu has been used to predict the viscosity of all mixtures.  相似文献   

18.
MFI zeolite membranes have been synthesized on tubular -alumina substrates to investigate the separation of p-xylene (PX) from m-xylene (MX) and o-xylene (OX) in binary, ternary, and simulated multicomponent mixtures in wide ranges of feed pressure and operating temperature. The results demonstrate that separation of PX from MX and OX through the MFI membranes relies primarily on shape-selectivity when the xylene sorption level in the zeolite is sufficiently low. For an eight-component mixture containing hydrogen, methane, benzene, toluene, ethylbenzene, PX, MX, and OX, a PX/(MX + OX) selectivity of 7.71 with a PX flux of 6.8 × 10−6 mol/(m2 s) was obtained at 250 °C and atmospheric feed pressure. The addition of a small quantity of nonane to the multicomponent mixture caused drastic decreases in the fluxes of aromatic components and the PX separation factor because of the preferential adsorption of nonane in the zeolite channels. The nanoscale intercrystalline pores also caused serious decline in the PX separation factor. A new method of online membrane modification by carbonization of 1,3,5-triisopropylbenzene in the feed stream was found to be effective for reducing the intercrystalline pores and improving the PX separation.  相似文献   

19.
This paper describes improvements to an apparatus for in-situ determinations of swelling where a linear inductive probe and electronic column gauge with an overall resolution of 0.1 μm was used for measurements of seven variants of polyacrylonitrile (PAN)/polydimethylsiloxane (PDMS) composite nanofiltration membranes in a range of alkane, aromatic and alcohol solvents. The unswollen membranes incorporated PDMS layers between 1 and 10 μm nominal thickness and were manufactured with a radiation and/or thermal crosslinking step.

The tested membranes exhibited a range of swelling dependent on the degree of crosslinking, the initial PDMS layer thickness and the type of solvent. With no applied pressure the PDMS layer on some radiation cross-linked membranes swelled as much as 170% of the initial thickness whilst other membranes were restricted to a maximum swelling of 80%. When a pressure up to 2000 kPa was applied to a membrane then swelling could be reduced to 20% of the value obtained at zero applied pressure. By vertically stacking up to three membrane samples it was possible to determine the swelling of PDMS layers as thin as 1 μm, although higher imposed pressures rendered some results unreliable as the measurement resolution of the apparatus was approached. The results of the swelling experiments are contrasted with crossflow nanofiltration performance in terms of solvent flux and solute rejection.  相似文献   


20.
Blend membranes prepared from poly(vinyl alcohol) (PVA) and chitosan (CS) were crosslinked with glutaraldehyde and used in the pervaporation dehydration of 1,4-dioxane. Membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) to assess, respectively, the intermolecular interactions, thermal stability and crystallinity. Equilibrium sorption studies were carried out in pure liquids and binary mixtures of different compositions of water + 1,4-dioxane mixtures to assess the polymer–liquid interactions. The crosslinked membrane showed a good potential in breaking the azeotrope of 82 wt.% aqueous 1,4-dioxane giving a selectivity of 117 with a reasonable water flux of 0.37 kg/m2 h. The effect of operating parameters such as feed composition, membrane thickness and permeate pressure was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号