首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The stresses that develop in the resin at and near the glass-resin interface during the curing of polyester and epoxy glass-reinforced plastics have been experimentally studied by the photoelastic method. The volume state of stress in three mutually perpendicular directions in various sections and in the danger zones is qualitatively and quantiatively described. It is established that the stresses investigated may be the cause of cracking that reduces the tightness and strength of the glass-reinforced plastic.I. M. Gubkin Moscow Institute of the Petrochemical and Gas Industry. Translated from Mekhanika Polimerov, No. 4, pp. 661–667, July–August, 1973.  相似文献   

2.
The conditions of fabrication and the physicomechanical properties of glass-reinforced plastics based on polysulfone combined in different ratios with epoxy resin and Rolivsan were investigated. It was found that realization of the strength of the fibers in glass-reinforced plastics based on three types of binders and mixtures of them at room temperature is approximately the same. The lower strength of glass-reinforced plastics based on polysulfone is determined by the lower concentration of fibers. Modification of thermosetting plastics with polysulfone significantly increases (by 5–8 times) the specific energy of delamination of the glass-reinforced plastics G1c, which should be manifested by an increase in their crack resistance and other operating characteristics. Modification of ED-20 with polysulfone and polysulfone with Rolivsan significantly increases the glass transition temperature of the polymer and affects the character of the temperature curves of the strength of the glass-reinforced plastics.Institute of Chemical Physics, Russian Academy of Sciences, Moscow. D. I. Mendeleev Russian Chemical Technological University, Moscow. Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 111–117, January–February, 1996.  相似文献   

3.
The adhesion of carbamide resin to clean or treated fiber glass surfaces has been determined. The effect of this adhesion on the strength of glass-reinforced plastics is examined.Moscow Mendeleev Chemical Engineering Institute. Translated from Mekhanika Polimerov, Vol. 4, No. 6, pp. 1119–1121, November–December, 1968.  相似文献   

4.
Network polymers and the corresponding glass-reinforced plastics are investigated for a homogeneous uniaxial state of stress and constant temperature. A physical law relating the high-elastic strain and the stress in explicit form with once-determined structural constants is obtained for the damped (bounded) creep regime. The theoretical solutions are compared with the experimental data for a glass-reinforced plastic based on unsaturated polyester resin and glass mat reinforcement.Institute of Engineering Mechanics, Bulgarian Academy of Sciences, Sofia. Translated from Mekhanika Polimerov, No. 5, pp. 851–857, September–October, 1971.  相似文献   

5.
It is shown experimentally that the strength of glass-reinforced plastics is determined by the properties of the resin close to the fibers; these depend on the structure and chemical composition of the fiber surface. A study is made of the effect of modification of the glass fiber on curing conditions in the layer next to the fiber for a number of resins (K9 silicone resin, ED-6 epoxy resin, polyacrylate-911, and furfural PF resin).Mekhanika polimerov, Vol. 1, No. 1, pp. 26–35, 1965  相似文献   

6.
It has been established by investigating the effect of common mineral powder fillers on the rate and depth of resin cure that such additions may have an inhibiting or catalytic influence on the hardening process, depending on their nature and method of preparation. The fillers which catalyze the hardening process increase the strength and heat resistance of the cured plastics. When introduced in small amounts into resins used as binders for unsized glass fibers, these fillers equalize the rate and depth of cure in the resin layers, thus increasing the strength and heat stability of glass-reinforced plastics.Mekhanika Polimerov, Vol. 1, No. 5, pp. 58–65, 1965  相似文献   

7.
The adhesion of an epoxy-polyester resin to glass fibers with clean and modified surfaces has been determined. The effect of this adhesion on some of the properties of glass-reinforced plastics (bending, tension, shear) is investigated.Mekhanika polimerov, Vol. 1, No. 1, pp. 93–99, 1965  相似文献   

8.
The effect of temperature on the dynamic E- and G-moduli and mechanical and dielectric loss factors of glass-reinforced plastics, cured polyester resin, and glass reinforcement is investigated, together with the effect of the oscillation frequency.Mekhanika polimerov, Vol. 1, No. 1, pp. 146–150, 1965  相似文献   

9.
A study of the curing kinetics of phenolformaldehyde resin in the presence of glass and quartz has shown that one of the chief causes of the reduced strength of glass-reinforced plastics based on phenol-formal-dehyde resin is the difference in the rate and degree of cure in layers close to the fibers and in the bulk of the resin. This is caused by the presence on the surface of the fibers of a hydrate sheath with increased concentration of hydroxyl ions and by the presence of hydrogen bonds between the oxyphenyl groups of the resin and the silanol groups on the surface of the fibers. Chemical treatment of the glass fibers has the effect of diminishing those factors responsible for the reduced rate and degree of cure, and in spite of the lower surface energy of the fibers, the strength of the glass-reinforced plastic increases.Mekhanika Polimerov, Vol. 1, No. 3. pp. 8–14, 1965  相似文献   

10.
A statistical analysis has been made of experimental data on the mechanical properties of a glass-reinforced plastic based on T1 glass fabric (Soviet standard GOST 8481-61) and IF-ÉD-6 epoxy resin (Elektroizolit Plant, tech. spec. TU 26-59) obtained by testing specimens cut from the waste of wound cylindrical shells. The data obtained can be used for estimating the mechanical reliability of products composed of glass-reinforced plastics of this type.Moscow. Translated from Mekhanika Polimerov, No. 1, pp. 131–134, January–February, 1971.  相似文献   

11.
The dependence of the thermal conductivity of glass-reinforced plastics on porosity and component ratio is investigated. The possibility of determining the porosity, specific weight, and resin content of glass-reinforced plastics from their thermal conductivity is confirmed.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 487–491, May–June, 1969.  相似文献   

12.
The basic relations of the theory of anisotropic creep of unidirectional glass-reinforced plastics (GRPs) in a three-dimensional stress state are found using a model of a material with inhomogeneous structure and the rheological properties of the resin. These relations are suitable for investigating the stress state of GRPs for resin stresses not exceeding certain values. The phenomena of simple creep and stress relaxation are studied with reference to a unidirectional GRP with an epoxy-maleic resin matrix.Mekhanika Polimerov, Vol. 1, No. 2, pp. 64–69, 1965  相似文献   

13.
The effect of structural parameters — length, diameter, and distribution of the reinforcing elements — on the mechanical characteristics of glass-reinforced plastics is investigated with reference to the case of glass laminates with randomly distributed, straight, uncut glass fibers in parallel planes. It is shown that the reduced strength of these laminates as compared with unidirectional material is associated with the redistribution of the load between the fibers and the resin and the relative reduction in the number of fibers in the cross section. A formula is proposed for estimating the strength of glass-reinforced plastics with a random distribution of the fibers in parallel planes.All-Union Scientific-Research Institute of Glass-Reinforced Plastics and Glass Fiber, Moscow Region. Moscow Bauman Higher Technical College. Translated from Mekhanika Polimerov, Vol. 4, No. 6, pp. 1043–1050, November–December, 1968.  相似文献   

14.
A method is proposed for calculating the residual stresses in hot-molded plastics parts. Data are presented for a polyester glass-reinforced plastic.Mekhanika Polimerov, Vol. 3, No. 5, pp. 827–832, 1967  相似文献   

15.
The behavior of glass-reinforced plastic based on ASTT (b)S2-O fabric and NPS-609-21M resin in tension and compression normal to the plane of reinforcement has been investigated and the mechanical characteristics determined. Recommended values are given for the size and shape of the test pieces, and a method of determining the tensile and compressive characteristics of glass-reinforced plastics is proposed.Leningrad. Translated from Mekhanika Polimerov, Vol. 4, No. 5, pp. 803–809, September–October, 1968.  相似文献   

16.
Model cylindrical shells have been wound from glass and Dacron (Mylar) film strip in accordance with a technique developed by the authors. A layer of glass-reinforced plastic, oriented in the direction of the circumferential tensile stresses, was applied to the outer cylindrical surface of the shells. Certain mechanical properties of the film plastics and their ability to cooperate with the glass-reinforced plastic outer layer were investigated by subjecting the shells to internal liquid pressure. The possibility of obtaining impermeable shells, equally strong in the axial and circumferential directions, was confirmed.Bauman Moscow Higher Technical College. Translated from Mekhanika Polimerov, No. 1, pp. 135–139, January–February, 1971.  相似文献   

17.
Experimental data are used as the basis for a discussion of some of the technical factors affecting the strength of filament-wound glass-reinforced plastics (GRP): winding speed, tension on the glass, life of resin. A relationship between the strength of GRP and these factors is demonstrated. The effect of the thickness and diameter of the test piece on the tensile strength of GRP material is examined.Mekhanika Polimerov, Vol. 3, No. 1, pp. 99–103, 1967  相似文献   

18.
A procedure and apparatus for determining the thermal activity of glass-reinforced plastics with one-sided access have been developed. A correlation is established between the interlaminar shear modulus and interlaminar shear strength and the thermal activity of a glass laminate. The effect of structural inhomogeneities and bonding flaws on the thermal activity of a glass-reinforced plastic is investigated and it is shown that the location of an inhomogeneity within the article can be determined.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 128–132, January–February, 1976.  相似文献   

19.
The possibility of using the pulsed ultrasonic testing method for checking the resin content and porosity of unidirectional glass-reinforced plastics is considered in relation to the case of broad independent variation of the parameters.Mekhanika Polimerov, Vol. 4, No. 3, pp. 547–554, 1968  相似文献   

20.
The determination of the residual stresses in glass-reinforced plastics elements is considered. It is shown that these stresses reach appreciable values and should be taken into account in strength calculations. Quantitative data are supplied for a series of materials. At normal operating temperatures the residual stresses are stable.Moscow Aviation Technological Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1117–1119, November–December, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号