首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
若图G不含有同构于K1,3的导出子图,则称G为一个无爪图.令a和b是两个整数满足2≤a≤b.本文证明了若G是一个含有[a,b]因子的2连通无爪图,则G有一个连通的[a,b 1]因子.  相似文献   

2.
3.
By Petersen's theorem, a bridgeless cubic multigraph has a 2-factor. Fleischner generalised this result to bridgeless multigraphs of minimum degree at least three by showing that every such multigraph has a spanning even subgraph. Our main result is that every bridgeless simple graph with minimum degree at least three has a spanning even subgraph in which every component has at least four vertices. We deduce that if G is a simple bridgeless graph with n vertices and minimum degree at least three, then its line graph has a 2-factor with at most max{1,(3n-4)/10} components. This upper bound is best possible.  相似文献   

4.
Strongly perfect graphs have been studied by several authors (e.g. Berge and Duchet (1984) [1], Ravindra (1984) [12] and Wang (2006) [14]). In a series of two papers, the current paper being the first one, we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking problem, we consider claw-free graphs that are fractionally strongly perfect in the complement. We obtain a forbidden induced subgraph characterization and display graph-theoretic properties of such graphs. It turns out that the forbidden induced subgraphs that characterize claw-free graphs that are fractionally strongly perfect in the complement are precisely the cycle of length 6, all cycles of length at least 8, four particular graphs, and a collection of graphs that are constructed by taking two graphs, each a copy of one of three particular graphs, and joining them in a certain way by a path of arbitrary length. Wang (2006) [14] gave a characterization of strongly perfect claw-free graphs. As a corollary of the results in this paper, we obtain a characterization of claw-free graphs whose complements are strongly perfect.  相似文献   

5.
曹细玉 《应用数学》1998,11(1):34-35
本文证明了:设G是n阶、k(≥3)连通无爪图,且不含同构于B的导出子图,若存在点v_0∈V(G),使d(v_0)≥n-2k+4,则G是Hamilton连通的.  相似文献   

6.
A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough graph the minimum degree δ(G)=2. We show that in every minimally 1-tough graph δ(G)n3+1. We also prove that every minimally 1-tough, claw-free graph is a cycle. On the other hand, we show that for every positive rational number t any graph can be embedded as an induced subgraph into a minimally t-tough graph.  相似文献   

7.
Mock threshold graphs are a simple generalization of threshold graphs that, like threshold graphs, are perfect graphs. Our main theorem is a characterization of mock threshold graphs by forbidden induced subgraphs. Other theorems characterize mock threshold graphs that are claw-free and that are line graphs. We also discuss relations with chordality and well-quasi-ordering as well as algorithmic aspects.  相似文献   

8.
For any permutation π of the vertex set of a graph G, the generalized prism πG is obtained by joining two copies of G by the matching {uπ(u):uV(G)}. Denote the domination number of G by γ(G). If γ(πG)=γ(G) for all π, then G is called a universal fixer. The edgeless graphs are the only known universal fixers, and are conjectured to be the only universal fixers. We prove that claw-free graphs are not universal fixers.  相似文献   

9.
10.
《Discrete Mathematics》2022,345(7):112874
We consider the problem of determining the inducibility (maximum possible asymptotic density of induced copies) of oriented graphs on four vertices. We provide exact values for more than half of the graphs, and very close lower and upper bounds for all the remaining ones. It occurs that, for some graphs, the structure of extremal constructions maximizing density of its induced copies is very sophisticated and complex.  相似文献   

11.
In this paper we obtain several characterizations of the adjacency matrix of a probe interval graph. In course of this study we describe an easy method of obtaining interval representation of an interval bigraph from its adjacency matrix. Finally, we note that if we add a loop at every probe vertex of a probe interval graph, then the Ferrers dimension of the corresponding symmetric bipartite graph is at most 3.  相似文献   

12.
Let H be a family of connected graphs. A graph G is said to be H-free if G is H-free for every graph H in H. In Aldred et al. (2010) [1], it was pointed that there is a family of connected graphs H not containing any induced subgraph of the claw having the property that the set of H-free connected graphs containing a claw is finite, provided also that those graphs have minimum degree at least 2 and maximum degree at least 3. In the same work, it was also asked whether there are other families with the same property. In this paper, we answer this question by solving a wider problem. We consider not only claw-free graphs but the more general class of star-free graphs. Concretely, given t≥3, we characterize all the graph families H such that every large enough H-free connected graph is K1,t-free. Additionally, for the case t=3, we show the families that one gets when adding the condition ∣H∣≤k for each positive integer k.  相似文献   

13.
This paper shows that, for every unit interval graph, there is a labelling which is simultaneously optimal for the following seven graph labelling problems: bandwidth, cyclic bandwidth, profile, fill-in, cutwidth, modified cutwidth, and bandwidth sum(linear arrangement).  相似文献   

14.
Strongly perfect graphs have been studied by several authors (e.g., Berge and Duchet (1984) [1], Ravindra (1984) [7] and Wang (2006) [8]). In a series of two papers, the current paper being the second one, we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking problem, we consider claw-free graphs that are fractionally strongly perfect in the complement. We obtain a forbidden induced subgraph characterization and display graph-theoretic properties of such graphs. It turns out that the forbidden induced subgraphs that characterize claw-free graphs that are fractionally strongly perfect in the complement are precisely the cycle of length 6, all cycles of length at least 8, four particular graphs, and a collection of graphs that are constructed by taking two graphs, each a copy of one of three particular graphs, and joining them in a certain way by a path of arbitrary length. Wang (2006) [8] gave a characterization of strongly perfect claw-free graphs. As a corollary of the results in this paper, we obtain a characterization of claw-free graphs whose complements are strongly perfect.  相似文献   

15.
16.
We study the problem of finding an acyclic orientation of an undirected graph, such that each (oriented) path is covered by a limited number k of maximal cliques. This is equivalent to finding a k-approximate solution for the interval coloring problem on a graph. We focus our attention on claw-free chordal graphs, and show how to find an orientation of such a graph in linear time, which guarantees that each path is covered by at most two maximal cliques. This extends previous published results on other graph classes where stronger assumptions were made.  相似文献   

17.
The graphs with no five-vertex induced path are still not understood. But in the triangle-free case, we can do this and one better; we give an explicit construction for all triangle-free graphs with no six-vertex induced path. Here are three examples: the 16-vertex Clebsch graph, the graph obtained from an 8-cycle by making opposite vertices adjacent, and the graph obtained from a complete bipartite graph by subdividing a perfect matching. We show that every connected triangle-free graph with no six-vertex induced path is an induced subgraph of one of these three (modulo some twinning and duplication).  相似文献   

18.
The circumference of a graph is the length of its longest cycles. Results of Jackson, and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex graph is Ω(n0.694), and the circumference of a 3-connected claw-free graph is Ω(n0.121). We generalize and improve the first result by showing that every 3-edge-connected graph with m edges has an Eulerian subgraph with Ω(m0.753) edges. We use this result together with the Ryjá?ek closure operation to improve the lower bound on the circumference of a 3-connected claw-free graph to Ω(n0.753). Our proofs imply polynomial time algorithms for finding large Eulerian subgraphs of 3-edge-connected graphs and long cycles in 3-connected claw-free graphs.  相似文献   

19.
A graph is a probe interval graph (PIG) if its vertices can be partitioned into probes and nonprobes with an interval assigned to each vertex so that vertices are adjacent if and only if their corresponding intervals overlap and at least one of them is a probe. PIGs are a generalization of interval graphs introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. PIGs have been characterized in the cycle-free case by Sheng, and other miscellaneous results are given by McMorris, Wang, and Zhang. Johnson and Spinrad give a polynomial time recognition algorithm for when the partition of vertices into probes and nonprobes is given. The complexity for the general recognition problem is not known. Here, we restrict attention to the case where all intervals have the same length, that is, we study the unit probe interval graphs and characterize the cycle-free graphs that are unit probe interval graphs via a list of forbidden induced subgraphs.  相似文献   

20.
An edge-coloring of a graph G with colors 1,2,…,t is called an interval (t,1)-coloring if at least one edge of G is colored by i, i=1,2,…,t, and the colors of edges incident to each vertex of G are distinct and form an interval of integers with no more than one gap. In this paper we investigate some properties of interval (t,1)-colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some families of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号