共查询到19条相似文献,搜索用时 64 毫秒
1.
分析比较了阻抗匹配和失配情况下传输线充电的原理和波过程。分析结果表明:失配情况下的最大优点是能够实现脉冲功率增益。应用阻抗为27 W、长度为540 mm传输线为充电传输线和长度分别为30,45,60 mm、阻抗均为5 W传输线为被充电传输线进行了对比试验。实验结果表明:在距离辐射天线6 m处,输出辐射场强随低阻抗传输线长度增加而略有增加,最大辐射场强为49 kV/m,考虑气体开关的实际能量损耗,这与理论分析的充电电压和功率增益关系相吻合;长度为45 mm的5 W被充电传输线的输出脉冲前沿约210 ps,幅度约为150 kV。 相似文献
2.
新近建立的亚纳秒前沿有界波模拟器由高压脉冲源、传输线、分布式负载和大地板等组成。高压脉冲源为外触发的冲击电流发生器。传输线由12根非均匀分布的缆线制成。亚纳秒前沿模拟器的传输线为锥形,分布式负载也为锥形,工作区域设置在锥形传输线中。因为没有平直段,像一个开放式的GTEM小室,电磁脉冲的高频分量可以达到GHz。亚纳秒削沿模拟器是研究电子仪器孔缝耦合、特种装置电磁效应的较为理想的模拟设备。锥角的设计满足试验区域对场的均匀性要求,本设计为tgθ=0.5。 相似文献
3.
4.
分析了三传输线型脉冲压缩装置的原理,从提高功率增益和小型化角度,在脉冲压缩装置中设计了一种3起端并联绕线的内置型高阻螺旋线结构。建立电路仿真模型和三维结构电磁场仿真模型,分析了高阻螺旋线特征参数对功率增益的影响。根据优化后的结果研制出紧凑型高功率亚纳秒脉冲压缩装置,经测试,前级输入脉冲宽度8 ns,功率1 GW时,输出脉冲宽度1.5 ns,功率3.7 GW,功率增益3.7。经过30万次运行考核,装置内部无滑闪和击穿现象,验证了设计可靠性。 相似文献
5.
6.
脉冲传输线的介质材料选择和参数设计对传输线的损耗具有至关重要的影响,根据分布参数理论和电磁场微波理论,给出环氧玻璃纤维FR-4和聚四氟乙烯F4B两种材料的损耗计算公式,在微带特性阻抗为50Ω,工作频率为10GHz时,FR-4和F4B的介质衰减系数分别为0.095 dB/cm和0.0023dB/cm;当微带厚度为18μm,介质材料厚度为0.25mm时,FR-4和F4B的导体衰减系数分别为0.0499dB/cm和0.0357dB/cm。数值计算和仿真结果表明,F4B材料传输线的介质损耗和导体损耗相对较低,是一种较好的介质材料,选择合适的介质材料厚度可保证损耗较低且电路体积不至于过大。 相似文献
7.
脉冲传输线的介质材料选择和参数设计对传输线的损耗具有至关重要的影响,根据分布参数理论和电磁场微波理论,给出环氧玻璃纤维FR-4和聚四氟乙烯F4B两种材料的损耗计算公式,在微带特性阻抗为50Ω,工作频率为10GHz时,FR-4和F4B的介质衰减系数分别为0.095 dB/cm和0.0023dB/cm;当微带厚度为18μm,介质材料厚度为0.25mm时,FR-4和F4B的导体衰减系数分别为0.0499dB/cm和0.0357dB/cm。数值计算和仿真结果表明,F4B材料传输线的介质损耗和导体损耗相对较低,是一种较好的介质材料,选择合适的介质材料厚度可保证损耗较低且电路体积不至于过大。 相似文献
8.
介绍了一种采用三传输线型形成线压缩技术直接产生高功率亚纳秒脉冲的方法。给出了脉冲压缩的理论分析,设计了相应的脉冲压缩装置,并采用Pspice软件建立了电路模型,计算结果显示脉冲压缩装置的功率增益可达到2.25倍,验证了理论分析。基于现有的CKP1000超宽谱脉冲源,建立了完整的脉冲压缩实验系统并展开实验研究,结果表明:脉冲压缩装置在入射脉冲电压220 kV、脉宽5 ns的情况下,可产生峰值电压295 kV,半高宽约800 ps,前沿400 ps的亚纳秒脉冲,脉冲压缩装置的功率增益约为1.8倍,实验结果与理论值基本相符。 相似文献
9.
10.
11.
设计了基于交叉耦合铁氧体非线性传输线高功率射频微波产生系统,系统由脉冲形成线、非线性传输线以及高功率匹配负载(或组合振子辐射天线)组成。由100 kV高压电源和高压微波电缆构成单传输线高功率脉冲形成线,形成线输出脉冲幅度35 kV,脉冲半宽60 ns。高压脉冲经过非线性传输线的脉冲压缩和调制,与高功率匹配负载相连时,实验得到了峰峰值31 kV、中心频率308 MHz、3 dB带宽为13%的射频振荡脉冲;与组合振子天线相连时,实验得到了中心频率380 MHz、3 dB带宽为12%的宽谱辐射。实验结果与数值模拟基本吻合。 相似文献
12.
13.
14.
15.
16.
17.
18.
设计了一个小型整体径向传输线并对其传输特性进行了实验研究。该传输线由两块相距1 cm的铝合金平板组成,其特征阻抗采用双曲线型。1个输出端口位于传输线中央,20个输入端口均匀分布在传输线的外圆周上,最多可供20路脉冲同时注入。此传输线浸没于去离子水中,其单向传输时间为15 ns。负载由20个154 的电阻并联而成,以保证输出端的阻抗匹配。实验测得的输出电压波形与3维电磁场仿真结果非常接近。此外,还通过实验研究了不同驱动脉冲路数情况下小型整体径向传输线的输出电压,发现在驱动脉冲路数较少的情况下,输出电压的幅值几乎正比于驱动脉冲的路数。 相似文献