首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ni-Al layered double hydroxides (LDHs) with Ni/Al molar ratio of 2, 3, and 4 were prepared by coprecipitation and treated under hydrothermal conditions at 180 °C for times up to 20 h. Thermal decomposition of the prepared samples was studied using thermal analysis and high-temperature X-ray diffraction. Hydrothermal treatment increased significantly the crystallite size of coprecipitated samples. The characteristic LDH diffraction lines disappeared completely at ca. 350 °C and a gradual crystallization of NiO-like mixed oxide was observed at higher temperatures. Hydrothermal treatment improved thermal stability of the Ni2Al and Ni3Al LDHs but only a slight effect of hydrothermal treatment was observed with the Ni4Al sample. The Rietveld refinement of powder XRD patterns of calcination products obtained at 450 °C showed a formation of Al-containing NiO-like oxide and a presence of a considerable amount of Al-rich amorphous component. Hydrothermal aging of the LDHs resulted in decreasing content of the amorphous component and enhanced substitution of Al cations into NiO-like structure. The hydrothermally treated samples also exhibited a worse reducibility of Ni2+ components. The NiAl2O4 spinel and NiO still containing a marked part of Al in the cationic sublattice were detected in the samples calcined at 900 °C. The Ni2Al LDHs hydrothermally treated for various times and related mixed oxides obtained at 450 °C showed an increase in pore size with increasing time of hydrothermal aging. The hydrothermal treatment of LDH precursor considerably improved the catalytic activity of Ni2Al mixed oxides in N2O decomposition, which can be explained by suppressing internal diffusion effect in catalysts grains.  相似文献   

2.
In this study, lanthanum incorporated chitosan beads (LCB) were synthesized using precipitation method and tested for fluoride removal from drinking water. The effect of various parameters like complexation and precipitation time, lanthanum loading and ammonia strength on fluoride removal have been studied. It is observed that the parameters for the synthesis of LCB have significant influence on development of LCB and in turn on fluoride removal capacity. The optimal condition for synthesis of LCB includes lanthanum loading: 10 wt%, complexation time: 60 min, precipitation time: 60 min, drying temperature: 75 °C for 72 h. The maximum fluoride adsorption capacity of LCB was found to be 4.7 mg/g and negligible release of lanthanum ion was observed. XRD analysis shows the presence of lanthanum hydroxide and amorphous nature of LCB. SEM of LCB shows the presence of oval lanthanum hydroxide particles spread over the chitosan matrix. Fluoride adsorption capacity has been calculated by applying Langmuir and Freundlich isotherms. The comparative study suggests that LCB shows four times greater fluoride adsorption capacity than the commercially used activated alumina.  相似文献   

3.
The aim of this study was to evaluate the defluoridation efficiencies of various sorbents in aqueous solution. These sorbents include synthetic nano-hydroxyapatite (n-HAp), biogenic apatite (bone meal), treated biogenic apatite (bone meal prepared by H2O2 oxidation) and geogenic apatite (rock phosphate), which were characterized by XRD, FTIR, TEM and SEM. It has been observed that the defluoridation capacities follow the order: n-HAp > BH2O2 > B > rock phosphate. The controlling factors, sorbent dose, initial fluoride concentration, pH, contact time and temperature were investigated. The defluoridation capacities increased with the increase in the initial fluoride concentration and contact time, decreased with the increase in the sorbent dose. The optimum pH range for removal of fluoride on various apatite sorbents was considered to be 5.0-6.0. The fluoride adsorption can be explained by Langmuir, Freundlich isotherms, and the adsorption kinetic data follow the pseudo-second-order model. Thermodynamic parameters such as ΔH0, ΔS0 and ΔG0 indicated that the adsorption on various apatite sorbents was spontaneous and endothermic. These results showed that bone meal is a promising material for fluoride adsorption.  相似文献   

4.
Layered hydroxides with a molar ratio of metals Mg: Al: M = 3: 1: 1 (M = Fe, Ce, Zr, Cr) were prepared and served as a basis to obtain the mixed oxides MgAlOx, MgAlCrOx, MgAlCeOx, MgAlZrOx, and MgAlCrOx. Powder X-ray diffraction was used to study the phase composition of the oxides. It was suggested that the catalyst active surface is related to the presence of spineltype X-ray amorphous compounds. Ammonia adsorption was used to determine the total acidity, and deuterated acetonitrile adsorption was applied to estimate the strength of acid sites. The catalytic properties of complex oxides were studied in the ethanol condensation reaction. An attempt was made to correlate the catalyst activity and selectivity and the distribution of acid and base sites on the catalyst surface.  相似文献   

5.
This study presents a rare use of layered double hydroxides of Fe(II) and Al(III) (Fe-Al LDH), as reported for the first time for bromate removal from aqueous solutions. The Fe-Al LDH samples were prepared with Fe/Al molar ratios of 1-4 using a co-precipitation method at pH 7, with subsequent hydrothermal treatment at 120°C. The Fe-Al LDH (molar ratio of Fe/Al=1, 2) with a layered structure exhibited nearly complete removal of bromate from initial concentration of 100μmol/dm(3) at a wide pH range of 4.0-10.5 over a 2h reaction period; the residual bromate concentration in the solution was lower than the detection limit of 0.07μmol/dm(3) (9μg-BrO(3)(-)/dm(3)). During the reaction period, bromide was released into the solution via a reduction process. Reactivity of Fe-Al LDH with a Fe/Al molar ratio of 2 did not decrease the bromate reduction efficiency during 30days.  相似文献   

6.
碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究   总被引:21,自引:0,他引:21  
采用碳纳米管和硝酸铝制备了碳纳米管负载氧化铝新型除氟材料.X射线衍射检测发现,当焙烧温度低于850℃时,氧化铝为无定形态,当焙烧温度为1050℃时,氧化铝为α形态,扫描电子显微镜观察到碳纳米管与氧化铝均匀掺杂.同时用碳纳米管负载氧化铝复合材料进行水中氟离子的吸附研究,结果表明,该复合材料具有优良的除氟效能.氧化铝负载量为30%、焙烧温度为450℃条件下制备的碳纳米管负载氧化铝复合材料的吸附除氟能力是γ-氧化铝的2.0~3.5倍,与IRA-410聚合树脂的吸附除氟能力相当,适宜pH范围为5.0~9.0,吸附等温线符合Freundlich方程.  相似文献   

7.
The adsorption of naphthol green B (NGB) by Mg/Al‐LDO (layered double oxides) with a Mg/Al molar ratio of 3:1 was investigated in a batch mode. Our study indicates that the maximum capacity of NGB adsorption at equilibrium is 193.4 mg and the percentage of absorption is 96.7%, with an adsorbent dose of 1.0 g/L under the following condition: 200 mg/L NGB concentration, temperature 298 K, pH 10.0 and an equilibrium time of 80 min. Langmuir and Freundlich adsorption models were used for fitting the isotherms, and the thermodynamic parameters have been calculated, which showed that the adsorption process was spontaneous and exothermic in nature. In the light of so called "memory effect", the Mg/Al‐LDO was found to recover their original layered structure after adsorption, and part of NGB ions intercalated into the interlayer of LDH (layered double hydroxides), which has been supported by XRD and FTIR. In addition, the competitive anions for adsorption and the regeneration of Mg/Al‐LDO have also been investigated.  相似文献   

8.
A multivariate calibration model (PLS) was developed for the simultaneous spectrophotometric determination of Al(III) and Fe(III) in post-hemodialysis fluids with pyrocathecol violet (PCV) as chromogenic reagent. The analytes build stable complexes with PCV in presence of hexamine buffered medium at pH 6.1. The complexes show overlapped absorption bands in the spectral range of 220-800 nm so that absorptions of 580 wavelengths were necessary for the calibrations. Determinations of Al(III) and Fe(III) were done without masking agents. The best calibration model was obtained by using PLS-1 regression with three components after data mean centering. The spectrophotometric method applied to assay the analytes in real post-hemodialysis samples containing no desferrioxamine B presented good agreement with voltammetric measurements used as reference. Concentrations ranging from 0.20 to 0.60 mg L−1 for Al(III) and for Fe(III) were determined in real samples. The multivariate detection limits for Al(III) and Fe(III) were 0.044 and 0.052 mg L−1, respectively, and the calculated values of sensitivity were 6.33 for Al(III) and 3.44 for Fe(III). The proposed method showed to be straightforward and useful to follow the hemodialysis progress for patients under treatment. Interferents were also investigated.  相似文献   

9.
In the present work the adsorption of some transition metal ions from aqueous solutions on a silica-based nanostructured hybrid material modified by aluminium was investigated. The novel organic-inorganic material was synthesized via a sol-gel method through hydrolysis and co-condensation reactions. Its structure was characterized by means of SEM, XRD and FTIR. Based on the data obtained the most probable cross-linking mechanism for the derived xerogel was proposed. The characterization of its texture parameters was carried out by low-temperature adsorption of nitrogen. The adsorption properties of this material with respect to Cu(II), Cr(III) and Pb(II) ions from single-component aqueous solutions and multi-component aqueous solutions containing also Cd(II) and Fe(III) were evaluated. The effect of contact time, acidity of initial solutions and metal ion concentrations was investigated using the batch method. Pseudo-first order, pseudo-second order and intraparticle diffusion models were used to analyze kinetic data. In all cases the adsorption was significantly affected by the pH value. Equilibrium modelling data were fitted to linear Langmuir, Freundlich and Dubinin-Radushkevich models. Best fit was observed for Langmuir model, which showed determination coefficients greater than 0.992 for all ions studied. The maximum adsorption capacities for single- and multi-component adsorption were calculated.   相似文献   

10.
The polyaniline/alumina (PANi-AlO) and polypyrrole/alumina (PPy-AlO) composites were prepared and characterized by FT-IR, SEM and X-ray diffraction studies and were employed as adsorbents for the removal of fluoride ions from aqueous solution by the batch sorption method. The amount of fluoride ions adsorbed per unit mass of the adsorbents was observed to be higher than that by the individual constituents. The maximal amount of adsorption is 6.6 mg/g for PANi-AlO and for PPy-AlO it is 8 mg/g. The Langmuir and Freundlich isotherms were used to describe adsorption equilibrium. The kinetics of the adsorption process was investigated using Natarajan-Khalaf equation and intraparticle diffusion model. FT-IR and XRD pattern of the adsorbent, before and after the adsorption is recorded to get better insight into the mechanism of the adsorption process. The results of equilibrium and spectral investigations revealed that the mechanism of fluoride ion removal by these composites involve both the formation of aluminium-fluoro complexes on the alumina surface and doping/dopant-exchange of fluoride ions in the polymer.  相似文献   

11.
A novel ion exchanger based on double hydrous oxide (Fe2O3Al2O3xH2O) was obtained by the original sol-gel method from easily available and cheap raw materials and employed for adsorption of F-, Cl-, Br-, and BrO-3 from simultaneous solutions. Adsorbent was characterized by potentiometric titration, zeta-potential, and poremetrical characteristics. A technologically attractive pH effect of F-, Br-, and BrO-3 sorption on the investigated double hydroxide of Fe and Al, which is capable of working in the pH range 3 to 8.5, was observed. Kinetic data on fluoride and bromide sorption fit well the pseudo-second-order model. Isotherms of fluoride, bromide, chlorine, and bromate ion sorption on Fe2O3Al2O3xH2O were obtained at pH 4. The isotherm of F- sorption fit well the Langmuir model; sorption affinity (K=0.52 L/mg) and sorption capacity (90 mg F/g) were high. In the competitive adsorption of bromide and bromate, bromide dominated at equilibrium concentrations of the ions >40 mg/L. The mechanism of fluoride adsorption to the surface of the model cluster of the sorbent synthesized and the geometry of the cluster itself were modeled with the HyperChem7 program using the PM3 method.  相似文献   

12.
A new modified nanometer SiO2 using 5-sulfosalicylic acid (SSA) as a solid-phase extractant was used for separation, preconcentration and determination of Fe(III) in aqueous solutions by inductively coupled plasma atomic emission spectrometry (ICP-AES). Its adsorption and preconcentration behaviour for Fe(III) in aqueous solutions was investigated using static procedures in detail. The optimum pH value for the separation of Fe(III) on the newly designed sorbent was 3.5. Complete elution of the adsorbed Fe(III) from the nanometer SiO2-SSA was carried out using 2.0 mL of 0.01 mol L− 1 of HCl. The time of 90% sorption was less than 2 min for Fe(III) at pH 3.5. Common coexisting ions did not interfere with the separation and determination of Fe(III) at pH 3.5. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 44.01 mg of Fe(III) per gram of sorbent. The relative standard deviation (RSD) of the method under optimum conditions was 3% (n = 5). The procedure was validated by analyzing three certified reference materials (GBW 08301, GBW 08504, GBW 08511), the results obtained were in good agreement with standard values. The nanometer SiO2-SSA was successfully employed in the separation and preconcentration of the investigated Fe(III) from the biological and natural water samples yielding 100-folds concentration factor.  相似文献   

13.
Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 °C in Co-Al sample to 120 °C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 °C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N2O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N2O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1.  相似文献   

14.
This study reports thermodynamic and kinetic data of Sb(III) adsorption from single metal solutions onto synthetic aqueous goethite (alpha-FeOOH). Batch equilibrium sorption experiments were carried out at 25 degrees C over a Sb:Fe molar range of 0.005-0.05 and using a goethite concentration of 0.44 g Fe/L. Experimental data were successfully modelled using Langmuir (R2 > or = 0.891) and Freundlich (R2 > or = 0.990) isotherms and the following parameters were derived from triplicate experiments: Kf = 1.903 +/- 0.030 mg/g and 1/n = 0.728 +/- 0.019 for the Freundlich model and b = 0.021 +/- 0.003 L/mg and Qmax = 61 +/- 8 mg/g for the Langmuir model. The thermodynamic parameters determined were the equilibrium constant, Keq =1.323 +/- 0.045, and the Gibb's free energy, DeltaG0 = -0.692 +/- 0.083 kJ/mol. The sorption process is very fast. At a Sb:Fe molar ratio of 0.05, 40-50% of the added Sb is adsorbed within 15 min and a steady state is achieved. The experimental data also suggest that desorption can occur within 24 h of reaction due to the oxidation of Sb(III) on the goethite surface. Finally, calculated pH of the aqueous solution using MINTEQ2 agrees well with the measured pH (3.9 +/- 0.7; n = 30). At pH 4, the dominant Sb species in solution are Sb(OH)3 and HSbO2 which both likely adsorb as inner sphere complexes to the positively charged goethite surface.  相似文献   

15.
In this work, Fe3O4-SiO2-poly(1,2-diaminobenzene) sub-micron particles (FSPs) with high saturated magnetization of ∼60-70 emu/g were developed and utilized for the removal of As(III), Cu(II), and Cr(III) ions from aqueous solution. The isothermal results fitted well with the Freundlich model and the kinetic results fitted well with the two-site pseudo-second-order model, which indicated that multilayer adsorption of As(III), Cu(II), and Cr(III) ions on FSPs occurred at two sites with different energy of adsorption. The maximum adsorption capacities followed the order of As(III) (84 ± 5 mg/g, pH = 6.0) > Cr(III) (77 ± 3 mg/g, pH = 5.3) > Cu(II) (65 ± 3 mg/g, pH = 6.0). And the chelating interaction was considered as the main adsorption mechanism. The as-prepared materials were chemically stable with low leaching of Fe (?1.7 wt.%) and poly(1,2-diaminobenzene) (?4.9 wt.%) in tap water, sea water, and acidic/basic solutions. These metal-loaded FSPs could be easily recovered from aqueous solutions using a permanent magnet within 20 s. They could also be easily regenerated with acid. The present work indicates that the FSPs are promising for removal of heavy metal ions in field application.  相似文献   

16.
H. Parham  N. Rahbar 《Talanta》2009,80(2):664-7942
A new, sensitive, fast and simple method using magnetic iron oxide nanoparticles (MIONs), as an adsorbent has been developed for extraction, preconcentration and determination of traces of fluoride ions. The determination method is based on the discoloration of Fe(III)-SCN complex with extracted fluoride ions which was subsequently monitored spectrophotometrically at λmax = 458 nm. Various parameters affecting the adsorption of fluoride by the MIONs have been investigated, such as pH of the solution, type, volume and concentration of desorbing reagent, amount of adsorbent and interference effects. A linear response for the determination of fluoride was achieved in the concentration range of 0.040-1.250 μg mL−1. The limit of detection (LOD) and limit of quantification (LOQ) for fluoride based on 3 times and 10 times the standard deviation of the blank (3Sb, 10Sb) were 0.015 and 0.042 μg mL−1 (n = 20) for fluoride ion, respectively. A preconcentration factor of 50 was achieved in this method. The proposed procedure has been applied for determination of fluoride concentration in various water samples. The results obtained from this method were successfully compared with those provided by standard SPADNS method.  相似文献   

17.
Layered double hydroxides (LDHs) with Mg and Al in the layers and carbonate, nitrate or chloride in the interlayer, or with Zn and Al in the layers and chloride in the interlayer, have been prepared by coprecipitation, and have been used as precursors to prepare chromate-containing LDHs. All these systems, as well as those obtained upon their calcination up to 800 °C, have been characterised by powder X-ray diffraction, FT-IR and vis-UV spectroscopies, temperature-programmed reduction (TPR), nitrogen adsorption at −196 °C for surface texture and porosity assessment, and FT-IR monitoring of pyridine adsorption for surface acidity determination. The results obtained show that the crystallinity of the chromate-containing LDH depends on the precursor used. The layered structure of the Mg, Al systems is stabilised up to 400 °C upon incorporation of chromate; however, the Zn,Al-chromate samples collapse between 200 and 300 °C, with simultaneous formation of ZnO. Calcination of the samples above 400 °C gives rise to a reduction of Cr(VI) to Cr(III), as concluded from vis-UV spectroscopic studies. The TPR profiles show that chromate in ZnAl hydrotalcite is more easily reduced than that incorporated in the magnesium ones. Moderately strong surface Lewis acid sites exist in all samples calcined below 500 °C.  相似文献   

18.
Vladescu L  Lerch-Gurguta R 《Talanta》1993,40(7):1127-1129
Spectrometric study on the complexation of Fe(III) with an organic reagent obtained by coupling 3-methyl-1-phenyl-5-pyrazolone with diazotized 3-hydroxy-4-amino-benzene sulphonic acid was carried out in alkaline solutions. A 1:2 Fe(III): reagent water soluble complex is formed. The optimum pH is 9.0-11.8. The maximum absorbance of the complex lies at lambda = 560 nm, where the absorbance of the reagent is low. The molar absorptivity is 9000 l.mole(-1).cm(-1) at pH = 11.6. The value of the stability constant determined at 20 +/- 1 degrees C, pH = 11.6 and lambda = 560 nm is 4 x 10(5)M. The Beer-Lambert law is followed for iron concentration in the 0.2-5.0 mug/ml range. The spectrophotometric method was tested on synthetic solutions and thus applied for determination of traces of Fe(III) in several samples of alkaline hydroxides and carbonates without the neutralization of the solutions.  相似文献   

19.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

20.
A new gallium (Ga(III)) ion-imprinted multi-walled carbon nanotubes (CNTs) composite sorbent was synthesized by a surface imprinting technique. The Ga(III) ion-imprinted/multi-walled carbon nanotubes (Ga(III)-imprinted/CNTs) sorbent was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), nitrogen adsorption experiment, static adsorption experiment, and solid-phase extraction (SPE) experiment. The effects of sample volume, sample pH, washing and elution conditions on the extraction of Ga(III) ion from real sample were studied in detail. The imprinted sorbent offered a fast kinetics for the adsorption of Ga(III). The maximum static adsorption capacity of the imprinted sorbent towards was 58.8 μmol g−1. The largest selectivity coefficient for Ga(III) in the presence of Al(III) was over 57.3. Compared with non-imprinted sorbent, the imprinted sorbent showed good imprinting effect for Ga(III) ion, the imprinting factor (α) was 2.6, the selectivity factor (β) was 2.4 and 2.9 for Al(III) and Zn(II), respectively. The developed imprinted SPE method was applied successfully to the detection of trace Ga(III) ion in fly ash samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号