首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The heating of perfluoro-3,3-diethylindan-1-one with SbF5 at 180°C after treatment of the reaction mixture with anhydrous HF afforded perfluoro-1,3-dimethyl-4-ethylisochromen, and after hydrolysis, perfluoro-1,3-dimethyl-4-ethyl-1H-isochromen-1-ol. The latter under the action of NaHCO3 converted into 5,6,7,8-tetrafluoro-1,3-bis(trifluoromethyl)-1H-isochromen-1-ol. Both isochromenols reacted with SOCl2 gave the corresponding polyfluoro-1-chloro-1H-isochromens. On dissolving isochromenols in CF3SO3H and isochromens in SbF5 perfluoro-1,3-dimethyl-4-ethylisochromenyl and 5,6,7,8-tetrafluoro-1,3-bis(trifluoromethyl)isochromenyl cations were generated which by hydrolysis were converted into the corresponding isochromenols.  相似文献   

2.
The reaction of perfluoro-1-methylindan with SiO2-SbF5 depending on the amount of SiO2 led to the formation after hydrolysis of the reaction mixture of perfluoro-3-methylindan-1-one, perfluoro-4-methylisochromen-1-one, 6-(1-carboxy-2,2,2-trifluoro-ethyl)-2,3,4,5-tetrafluoro-benzoic and 6-(carboxymethyl)-2,3,4,5-tetrafluorobenzoic acids. Heating in the SbF5 medium perfluoro-1-methylindan in a glass ampoule at 130°C, or perfluoro-3-methylindan-1-one at 70°C provided a solution of a perfluoro-4-methylisochromenium salt that on treating with anhydrous HF was converted into perfluoro-4-methyl-1H-isochromen, and on hydrolysis, into perfluoro-4-methylisochromen-1-one.  相似文献   

3.
Perfluoro-2-ethyl-2-phenylbenzocyclobutenone heated with SbF5 at 70 °C and then treated with water, forms perfluoro-3-ethyl-3-phenylphthalide. In contrast to this, heating of perfluoro-2,2-diethylbenzo-cyclobutenone with SbF5 at 70 °C gives, after treatment of the reaction mixture with water, perfluoro-2-(pent-2-en-3-yl)benzoic acid. When the reaction temperature is raised to 125 °C, a solution of a salt of perfluoro-4-ethyl-3-methylisochromenyl cation is obtained. Hydrolysis of the solution of the salt gives perfluoro-4-ethyl-3-methylisochromen-1-one.  相似文献   

4.
Perfluoro-1-ethylindan heated with excess of SiO2 in an SbF5 medium at 75 °C and then treated with water, gives 4-carboxy-perfluoro-3-methylisochromen-1-one. Perfluoro-3-ethylindan-1-one is converted, under the action of SbF5 at 70 °C, to perfluoro-2-(but-2-en-2-yl)benzoic acid as a mixture of E- and Z-isomers. When the reaction temperature is raised to 125 °C, a solution of salts of perfluoro-3,4-dimethyl-1H-isochromen-1-yl and perfluoro-4-ethyl-1H-isochromen-1-yl cations is obtained. Increase in the reaction time lowers the content of a salt of the latter cation in the solution. Hydrolysis of the solution of the salts gives perfluoro-3,4-dimethylisochromen-1-one and perfluoro-4-ethylisochromen-1-one.  相似文献   

5.
Pyrolyses of these highly branched fluorocarbons over glass beads caused the preferential thermolyses of CC bonds where there is maximum carbon substitution. Fluorinations of perfluoro-3,4-dimethylhex-3-ene (tetramer) (I) and perfluoro-4-ethyl-3,4-dimethylhex- 2-ehe (pentamer) (II) over cobalt (III) fluoride at 230° and 145° respectively afforded the corresponding saturated fluorocarbons (III) and (IV), though II gave principally the saturated tetramer (III) at 250°. Pyrolysis of III alone at 500—520° gave perfluoro-2-methylbutane (V), whilst pyrolysis of III in the presence of bromine or toluene afforded 2-bromononafluorobutane (VI) and 2H-nonafluorobutane (VII) respectively. Pyrolysis of perfluoro-3-ethyl-3, 4-dimethylhexane (IV) alone gave a mixture of perfluoro-2-methylbutane (V), perfluoro-2-methylbut-1-ene (VIII), perfluoro-3-methylpentane (IX), perfluoro-3,3-dimethylpentane (X), and perfluoro-3,4- dimethylhexane (III). Pyrolysis of IV in the presence of bromine gave (VI) and 3-bromo-3-trifluoromethyl-decafluoropentane (XI): with toluene, pyrolysis gare VlI and 3H-3-trifluoromethyldecafluoropentane (XII). Pyrolysis of II at 500° over glass gave perfluoro-1,2,3-trimethylcyclobutene (XIII) and perfluoro-2,3-dimethylpenta-1,3(E)- and (Z)-diene (XIV) and (XV) respectively. The diene mixture (XIV and XV) was fluorinated with CoF3 to give perfluoro-2,3-dimethylpentane (XVI) and was cyclised thermally to give the cyclobutene (XIII). Pyrolysis of perfluoro-2- (1′-ethyl-1′-methylpropyl)-3-methylpent-1-ene (XVII) (TFE hexamer major isomer) at 500° gave perfluoro-1-methyl-2-(1′-methylpropyl)cyclobut-1-ene (XVIII) and perfluoro-2-methyl-2-(1′-methylpropyl)buta-1,3-diene (XIX). Fluorination of XVIII over CoF3 gave perfluoro-1-methyl-2- (1′-methylpropyl)cyclobutane (XX), which on co-pyrolysis with bromine gave VI. XIX on heating gave XVIII. Reaction of XVIII with ammonia in ether gave a mixture of E and Z 1′-trifluoromethyl-2-(1′-trifluoromethyl- pentafluoropropyliden-1′-yl)tetrafluorocyclobutylamine (XXI) which on diazotisation and hydrolysis afforded 2-(2′trifluoromethyl- tetrafluorocyclobut-1-en-1′-yl)-octafluorobutan-2-ol (XXII).  相似文献   

6.
In the presence of antimony pentafluoride at 130 °C, the four-membered ring of perfluoro-1-(2-ethylphenyl)benzocyclobutene (2) undergoes cleavage, forming perfluoro-2-ethyl-2′-methyldiphenylmethane (5). Compound 5 is converted, under the action of SbF5 at 170 °C, to perfluoro-8,9-dimethyl-1,2,3,4-tetrahydrofluorene (8). Perfluoro-1-(4-ethylphenyl)benzocyclobutene (3) remains unchanged at 130 °C, whereas at 170 °C it gives a mixture of perfluorinated 4′-ethyl-2-methyldiphenylmethane (9), 6-ethyl-1,2,3,4-tetrahydroanthracene (11) and 2-ethyl-9,10-dihydroanthracene (12). When heated with SbF5 at 170 °C, perfluoro-1-phenylbenzocyclobutene (1) remains unchanged. Solution of compounds 2, 3, 5 and 9 in SbF5-SO2ClF generated the perfluorinated 1-(2-ethylphenyl)-1-benzocyclobutenyl (29), 1-(4-ethylphenyl)-1-benzocyclobutenyl (30), 2-ethyl-2′-methyldiphenylmethyl (31) and 4′-ethyl-2-methyldiphenylmethyl (32) cations, respectively.  相似文献   

7.
As part of a programme to prepare and evaluate a series of perfluoro- chemicals for use as inert fluids, the fluorinations of some tetrafluoroethylene oligomers over cobalt (III) fluoride have been studied.Fluorination of perfluoro-3,4-dimethylhex-3-ene (tetramer) and perfluoro-4-ethyl-3,4-dimethylhex-2-ene (pentamer) over CoF3 at 230°C and l45°C respectively afforded the corresponding saturated fluorocarbons however, at 250°C, pentamer gave predominantly the saturated tetramer. The thermal behaviour of these saturated fluorocarbons alone and in the presence of bromine and toluene has been studied.Pyrolysis of pentamer over glass beads at 500°C gave perfluoro-1,2,3- trimethylcyclobutene and isomers of perfluoro-2,3-dimethylpenta-1,3- diene. Under similar conditions perfluoro-2-(1-ethyl-1-methylpropyl). 3-methylpent-1-ene (hexamer) gave perfluoro-1-methyl-2-(1-methyl- propyl)-cyclobut-1-ene and perfluoro-2-methyl-3-(1-methylpropyl)-buta- 1,3-diene.These reactions and the structural elucidation of the products will be discussed.  相似文献   

8.
A reaction of perfluoro-1-methylbenzocyclobutene with pentafluorobenzene in SbF5 medium followed by treating the reaction mixture with water gave rise to perfluoro-1-methyl-1-phenylbenzocyclobutene, perfluoro-1-methyl-2-phenylbenzocyclobutene, 2-hydroxyperfluoro-1-methyl-2-phenylbenzocyclobutene, and also to small amounts of 1-(2-trifluoromethyltetrafluorophenyl)-1-pentafluorophenyl-2,2,2-trifluoroethane, and perfluoro-1-(2-methylphenyl)-1-phenylethylene. In a crystal of (E)-2-hydroxyperfluoro-1-methyl-2-phenylbenzocyclobutene for a dimer molecular pair a -stacking interaction between pentafluorophenyl groups was found.  相似文献   

9.
Perfluoro-1,2-diethyl-1-phenylbenzocyclobutene under the action of SbF5 gives, after treatment of the reaction mixture with water, perfluoro-4-[1-(6-propyl-phenyl)-propylidene]cyclohexa-2,5-dienone along with the products of unusual pentafluorobenzene ring expansion - perfluorinated 4b,10-diethylbenzo[a]azulen-7(4bH)-one and 10-ethylbenzo[a]azulen-6(10H)-one.  相似文献   

10.
Perfluorinated 2-methyl- and 2-ethylbenzocyclobutenones on heating in SbF5 underwent isomerization into perfluoroindan-1-one and perfluoro(2-methylindan-1-one), while their reaction with SiO2—SbF5 gave perfluorinated 3-methyl- and 3-ethylphthalides, respectively. Perfluorinated 2-ethyl-2-methyl- and 2,2-diethylbenzocyclobutenones reacted with SbF5 to produce perfluorinated 2-(but-2-en-2-yl)- and 2-(pent-2-en-3-yl)-benzoic acids, and their transformations in SbF5 over SiO2 afforded 5,6,7,8-tetrafluoro-1-oxo-3-trifluoromethyl-1H-isochromene-4-carboxylic acid and perfluoro(4-ethyl-3-methyl-1H-isochromen-1-one), respectively.  相似文献   

11.
P. Shanmugam 《Tetrahedron》2006,62(41):9726-9734
Ceric ammonium nitrate (CAN) has been explored for the regioselective oxidation of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs). Interestingly, we obtained ethyl 2,4-dioxo-6-phenyl-tetrahydropyrimidin-5-carboxylates as the major products during the oxidation of DHPMs by CAN/AcOH at 80 °C. The reaction afforded a mixture of products while employing CAN in organic solvents without additives. However, the regioselective dehydrogenated product, ethyl 6-methyl-4-aryl(alkyl)-pyrimidin-2(1H)-one-5-carboxylate was obtained by performing the reaction with NaHCO3. The single crystal X-ray crystallography of ethyl 6-methyl-4-(2-phenyl)-pyrimidin-2(1H)-one-5-carboxylate revealed that the oxidized product existed in amidic form rather than aromatized enol form of pyrimidines. The efficiency of the present protocol enabled the synthesis of structurally diverse pyrimidines in moderate to good yields under milder reaction conditions.  相似文献   

12.
The reaction of perfluoro(1-methyl-1-phenyl-1,2-dihydrocyclobutabenzene) with SbF5 at 50°C, followed by hydrolysis, gave perfluoro(1-phenylindan-1-ol), while analogous reaction at 90°C afforded perfluoro[10-methylanthracen-9(10H)-one]. Perfluoro(1-methyl-2-phenyl-1,2-dihydrocyclobutabenzene) did not undergo skeletal transformations under analogous conditions, whereas at 200°C it was converted mainly into perfluoro(9-methylfluoren-9-ol). Perfluoro(1-ethyl-2-phenyl-1,2-dihydrocyclobutabenzene) reacted with SbF5 at 200°C to form perfluoro(9-ethylfluoren-9-ol) together with perfluorinated 9,9-dimethyl- and 9-ethyl-9-methyl-1,2,3,4-tetrahydro-9H-fluorenes.  相似文献   

13.
Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediate thiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.  相似文献   

14.
Reactions of perfluorinated 1-phenyl-, 1-(2-ethylphenyl)-, 1-(4-ethylphenyl)-, 1-methyl-2-phenyl-, and 1-ethyl-2-phenyl-1,2-dihydrocyclobutabenzenes with iodine in antimony pentafluoride at 130°C, followed by hydroysis of the reaction mixture, resulted in the formation of perfluorinated 2-methyl-, 2-ethyl-2′-methyl-, 4-ethyl-2′-methyl-, 2-ethyl-, and 2-propylbenzophenones via opening of the four-membered ring in the initial cyclobutabenzene at the C1–C2 bond. The presence of hydrogen fluoride facilitates the process and promotes profound transformations leading to anthracene derivatives.  相似文献   

15.
Perfluoro-1-phenyltetralin (1) heated with antimony pentafluoride at 130 °C, then treated with water, gave a mixture of perfluorinated 3-methyl-2-phenylindenone (3), 3-methyl-2-phenylindene (4), 3-hydroxy-1-methyl-3-phenylindan (5), 1-methyl-3-phenylindan (6), 9-methyl-1,2,3,4,5,6,7,8-octahydroanthracene (7), and 1,9-dimethyl-5,6,7,8-tetrahydro-β-naphthindan (8). When heated with SbF5 in the presence of HF, then treated with water, compound 1 is transformed to a mixture of products 3-6. The reaction at 170 and 200 °C forms compounds 3-6 together with perfluoro-2-(cyclohexen-1-yl)-3-methylindene (10).  相似文献   

16.
Vijay Singh  Sanjay Batra 《Tetrahedron》2006,62(43):10100-10110
The formation of substituted 2-pyrrolidinones and indoles by the reduction of the secondary nitro group in appropriate 3-aryl-2-methylene-4-nitroalkanoates afforded by Baylis-Hillman chemistry via different reducing agents is described. The 3-aryl-2-methylene-4-nitroalkanoate obtained from SN2 nucleophilic reaction between the acetate of Baylis-Hillman adducts and ethyl nitroacetate upon reduction with indium-HCl furnishes a mixture of cis and trans substituted phenyl-3-methylene-2-pyrrolidinones. In contrast, similar reductions of analogous substrates derived from nitroethane stereoselectively furnished only the trans substituted phenyl-3-methylene-2-pyrrolidinones. On the other hand the SnCl2·2H2O-promoted reductions of substrates derived from nitro ethylacetate give oxime derivatives while the ones obtained from nitroethane yield a mixture of cis and trans 4-aryl-3-methylene-2-pyrrolidinones. Alternatively, the SnCl2·2H2O-promoted reduction of substituted 2-nitrophenyl-2-methylene-alkanoate furnished from ethyl nitroacetate yield 3-(1-alkoxycarbonyl-vinyl)-1H-indole-2-carboxylate while indium-promoted reaction of this substrate leads to a complex mixture. Analogous reactions with SnCl2·2H2O of substituted 2-nitrophenyl-2-methylene-alkanoate obtained from nitroethane yield 4-alkyl-3-methylene-2-quinolones in moderate yields.  相似文献   

17.
10-Propenylphenothiazine reacts with a catalytic amount of BF3·Et2O in dry ethyl acetate via intramolecular heterocyclization of an intermediate dimeric cation to give mainly 1-ethyl-2-methyl-3-(phenothiazin-10-yl)-2,3-dihydro-1H-pyrido[3,2,1-k,l]phenothiazine and a minor product through fission of phenothiazine which is 1-ethyl-2-methyl-1H-pyrido[3,2,1-k,l]phenothiazine. Under similar conditions 10-propenylphenoxazine gave an oligomer (degree of polymerization 4.4) and the minor product 1-ethyl-2-methyl-1H-pyrido[3,2,1-k,l]phenoxazine likely formed similarly to the phenothiazine analog from the corresponding product of intramolecular heterocyclization (the latter not being observed in the reaction mixture). Dedicated to Academician of the Russian Academy of Sciences B. A. Trofimov on his jubilee. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1855–1860, December, 2008.  相似文献   

18.
Reaction of 2 equiv. amount of copper(II) nitrate hexahydrate with 1 equiv. of 5-methyl-1-pyridin-2-yl-1H-pyrazole-3-carboxylic acid (PyPzCA) in presence of triethyl amine base afforded a 1D coordination polymeric compound [Cu2(PyPzCA)2(H2O)3(NO3)]NO3·H2O (1). Whereas, the same reaction when repeated with 1-(4,6-dimethyl-pyrimidin-2-yl)-5-methyl-1H-pyrazole-3-carboxylic acid (PymPzCA) instead of PyPzCA, a mononuclear compound [Cu(PymPzCA)]·2H2O·NEt3 (2) is formed. Both the complexes are crystallographically characterized. In 1, both the copper atoms (Cu1 and Cu2) have distorted square pyramidal geometry with N2O3 chromophore while, in 2, the central copper atom has a distorted trigonal bipyramidal geometry with N4O chromophore. Complex 1, is a 1D coordination polymer where the metal centers being far apart and are involved in a weak ferromagnetic interaction which is quite unexpected.  相似文献   

19.
Lactam acetals     
It is shown in the case of the reaction of N-methylbutyro-, N-methylvalero-, and N-methylcaprolactam diethylacetals with benzyl cyanide that the five-membered acetal is the most reactive in the reaction with compounds having an active methylene link. 1-Methyl-3-(Ωphenyl-Ω-benzoxymethylene)-2-pyrrolidone is primarily formed in the reaction of N-methyl-2-pyrrolidone diethylacetal with C6H5COCl. The reaction of N-methylcaprolactam diethylacetal with acrylonitrile gives a mixture of N-methylcaprolactam, 1-methyl-2-ethoxy-3-(Β-cyanoethyl)-4, 5,6,7-tetrahydroazepine, and 2-methyl-1,9-dehydro-9-cyano-2-azabicyclo-[5.2.0] nonane.  相似文献   

20.
Neutral [EuL3Phen] complexes were synthesized by the reaction of EuCl3 with heterocyclic diketones-1-(1,5-dimethyl-1H-pyrazol-4-yl)-4,4,4-trifluoro-1,3-butanedione and 4,4,5,5,6,6,6-heptafluoro-1-(1-methyl-1H-pyrazol-4-yl)-1,3-hexanedione—and 1,10-phenanthroline (Phen) in an aqueous alcohol solution in the presence of NaOH. The reaction of GdCl3 with the same diketones under analogous conditions, but without adding 1,10-phenanthroline, yielded [GdL3(H2O)2] complexes. The composition of the complexes was determined by elemental analysis, and their optical and luminescent properties were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号