首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vicinal perfluorodi-t-butoxycycloalkanes and isomers have been prepared in 50 to 70% yields through photochemical reactions of (CF3)3COOC(CF3)3 with perfluorocycloolefins (c-C5F8 and c-C6F10) under a 200-watt Hg lamp at ?20°C. The two isomers of vic-C5F8[OC(CF3)3]2 in 1:4 ratio have been fractionated and identified as cis- and trans-isomers respectively. The three isomers for vic-C6F10[OC(CF3)3]2 in 1:4:2 ratio have been fractionated and tentatively identified as equatorial-equatorial, axialequatorial and axial-axial respectively.New 2,2′ -perfluorodimethoxycycloalkyls have been prepared in 60 to 80% yields through photolysis of CF3OOCF3 with perfluorocycloolefins under a 2500-watt Hg-Xe lamp at ?20°C. The attempted separations of the rotational isomers have been unsuccessful. The need of a strong ultra-violet source for primary perfluorodialkyl peroxide is discussed and the mechanism and the radical chain sequences are presented.Another new synthesis of bis(perfluoro-t-butyl) peroxide [D(CF3)3CO-OC(CF3)3 ?34.5 kcal] from (CF3)3COF using difluoroamino radicals as the fluoroxy fluorine atoms acceptor is described.  相似文献   

2.
Due to their extreme reactivity, fluorine and fluorinated gases may be used to modify the surface properties of numerous materials. In the following, the surface fluorination of some carbon-based compounds (graphite, graphitised carbon fibres, carbon blacks and elastomers) using CF4 rf plasma technique and direct F2-gas fluorination is proposed. From XPS studies, the different types of CF bonding obtained in the materials after treatment have been correlated either to the physico-chemical characteristics of the pristine material or to the experimental parameters of the fluorination. Reaction mechanisms are proposed.  相似文献   

3.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

4.
Molten mixtures of XeF6 and CrVIOF4 react by means of F2 elimination to form [XeF5][Xe2F11][CrVOF5] ⋅ 2 CrVIOF4, [XeF5]2[CrIVF6] ⋅ 2 CrVIOF4, [Xe2F11]2[CrIVF6], and [XeF5]2[CrV2O2F8], whereas their reactions in anhydrous hydrogen fluoride (aHF) and CFCl3/aHF yield [XeF5]2[CrV2O2F8] ⋅ 2 HF and [XeF5]2[CrV2O2F8] ⋅ 2 XeOF4. Other than [Xe2F11][MVIOF5] and [XeF5][MVI2O2F9] (M=Mo or W), these salts are the only Group 6 oxyfluoro-anions known to stabilize noble-gas cations. Their reaction pathways involve redox transformations that give [XeF5]+ and/or [Xe2F11]+ salts of the known [CrVOF5]2− and [CrIVF6]2− anions, and the novel [CrV2O2F8]2− anion. A low-temperature Raman spectroscopic study of an equimolar mixture of solid XeF6 and CrOF4 revealed that [Xe2F11][CrVIOF5] is formed as a reaction intermediate. The salts were structurally characterized by LT single-crystal X-ray diffraction and LT Raman spectroscopy, and provide the first structural characterizations of the [CrVOF5]2− and [CrV2O2F8]2− anions, where [CrV2O2F8]2− represents a new structural motif among the known oxyfluoro-anions of Group 6. The X-ray structures show that [XeF5]+ and [Xe2F11]+ form ion pairs with their respective anions by means of Xe- - -F–Cr bridges. Quantum-chemical calculations were carried out to obtain the energy-minimized, gas-phase geometries and the vibrational frequencies of the anions and their ion pairs and to aid in the assignments of their Raman spectra.  相似文献   

5.
Some Reactions with [Mo6Cl8]Cl4 The reaction of [Mo6Cl8]Cl4 with different chemical agents has been investigated: The methoxylation depends on the CH3O? concentration in CH3OH. The reaction with HF leads to a partial fluorinated [Mo6Cl8] product. With NH4F (NH4)2[Mo6Cl8]F6 in formed, the hydrolysis of which leads to [Mo6Cl8]F3(OH) · 2.5 H2O. This compound can be decomposed thermically into [Mo6Cl8]O2. [Mo6Br8]F62? on hydrolysis leads to [Mo6Br8]F3(OH) · 5 H2O. With CsF Cs2[Mo6Cl8]F6 is formed, which by hydrolysis is transformed into [Mo6Cl8]F3(OH) · 2.5 H2O and possibly to [Mo6Cl8]F4 · xH2O(?). In reaction of [Mo6Cl8]Cl4 with H2SO4 one gets [Mo6Cl8](SO4)2. Salts e. g. [(C6H5)4As]2[Mo6Cl8](OC6F5)6 and adducts e. g. [Mo6Cl8](OC6F5)4 · 2 HMPA are prepared. The compounds have been characterized by X-ray powder-diagramms and by IR-spectra.  相似文献   

6.
Two oxoperoxofluoro complexes of vanadium, viz., (NH4)2 [VO(O2) (OH)F2] and K4 [V2O3(O2)2F4] have been prepared by crystallising solutions of vanadium pentoxide in aqueous hydrofluoric acid with ammonium or potassium fluoride solutions containing hydrogen peroxide at 5°C. The orange crystalline substances are quite stable. They are very weakly paramagnetic and display strong ν(VO) and ν(OO) bands in their i.r. spectra. The TGA curves of the complexes show horizontals corresponding to the formation of (NH4)4 [V2O5F4] and K4[V2O5F4] respectively which have actually been isolated. These appear to be oxobridged complexes. The x-ray patterns of the two peroxo complexes are distinctly different.  相似文献   

7.
A family of seven silver(I)-perfluorocarboxylate-quinoxaline coordination polymers, [Ag4(O2CRF)4(quin)4] 1 – 5 (RF=(CF2)n-1CF3)4, n=1 to 5); [Ag4(O2C(CF2)2CO2)2(quin)4] 6 ; [Ag4(O2CC6F5)4(quin)4] 7 (quin=quinoxaline), denoted by composition as 4 : 4 : 4 phases, was synthesised from reaction of the corresponding silver(I) perfluorocarboxylate with excess quinoxaline. Compounds 1 – 7 adopt a common 2D layered structure in which 1D silver-perfluorcarboxylate chains are crosslinked by ditopic quinoxaline ligands. Solid-state reaction upon heating, involving loss of one equivalent of quinoxaline, yielding new crystalline 4 : 4 : 3 phases [Ag4(O2C(CF2)n-1CF3)4(quin)3]n ( 8 – 10 , n=1 to 3), was followed in situ by PXRD and TGA studies. Crystal structures were confirmed by direct syntheses and structure determination. The solid-state reaction converting 4 : 4 : 4 to 4 : 4 : 3 phase materials involves cleavage and formation of Ag−N and Ag−O bonds to enable the structural rearrangement. One of the 4 : 4 : 3 phase coordination polymers ( 10 ) shows the remarkably high dielectric constant in the low electric field frequency range.  相似文献   

8.
《Polyhedron》2005,24(16-17):2443-2449
The syntheses and structures of five new Mn3+ clusters [Mn26O17(OH)8(OMe)4F10(Bta)22(MeOH)14(H2O)2] (1), [Mn10O6(OH)2(Bta)8(py)8F8] (2), {NHEt3}2[Mn3O(Bta)6F3] (3), [Mn8O4(OMe)2(Me2Bta)6F8(Me2BtaH)(MeOH)8] (4), and [Mn13O12(Me2Bta)12F6(MeOH)10(H2O)2] (5), are reported, thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry.  相似文献   

9.
Four new [H3tren]3+ or [H4tren]4+ fluoride zirconates and two new [H3tren]3+ fluoride tantalates are evidenced in the (ZrF4 or Ta2O5)-tren-HFaq.-ethanol systems at 190 °C: the structurally related phases [H4tren]·(Zr2F12)·H2O and α-[H4tren]·(Zr2F12) (P212121), β-[H4tren]·(Zr2F12) (P21/c), [H3tren]4·(ZrF8)3·4H2O (I23), β-[H3tren]2·(Ta3O2F16)·(F) (R32) and its monoclinic distortion α-[H3tren]2·(Ta3O2F16)·(F) (C2/m). α and β-[H4tren]·(Zr2F12) and [H4tren]·(Zr2F12)·H2O are built up from (Zr2F12) dimers of edge sharing ZrF7 polyhedra while isolated ZrF8 dodecahedra are found in [H3tren]4·(ZrF8)3·4H2O. Linear (Ta3O2F16) trimers build α and β-[H3tren]2·(Ta3O2F16)·(F); they consist of two (TaOF6) pentagonal bipyramids that are linked to two opposite oxygen atoms of one central (TaO2F4) octahedron. A disorder affects the equatorial fluorine atoms of the trimers and eventually carbon or nitrogen atoms of [H3tren]3+ cations.  相似文献   

10.
Herein, a new congruently melting mixed-anion compound Cs4B4O3F10 has been characterized as the first fluorooxoborate with [BF4] involving heteroanionic units. Compound Cs4B4O3F10 possesses two highly fluorinated anionic clusters and therefore its formula can be expressed as Cs3(B3O3F6) ⋅ Cs(BF4). The influence of [BF4] units on micro-symmetry and structural evolution was discussed based on the parent compound. More importantly, Cs4B4O3F10 shows the lowest melting point among all the available borates and thus sets a new record for such system. This work is of great significance to enrich and tailor the structure of borates using perfluorinated [BF4] units.  相似文献   

11.
The fluoropolytungstates [H2W12F2O38]4? and [HW12F3O37]4?, which are of the metatungstate type with the fluoride ions occupying inner sites, lose fluoride ion and form more higly charged species [H2W12FO39]5? and [HW12F2O38]5? in aqueous solution about pH 3 in media of suitable ionic strength. Kinetic results are presented here consistent with a mechanism involving less condensed species containing 11 tungsten and 1, 2 or 3 fluoride atoms. Involvement of such species is supported by the isolation of the aluminotungstates [HW11AlF3O36(H2O)] (TMA)52, 30H2O and [H2W11AlF2O37(H2O)](TMA)5, 17H2O.  相似文献   

12.
The combination of RbB3O4F2 and NaF generates a new member of fluorooxoborates, NaRbB3O4F3, with a wide transparency range from the IR to DUV region. NaRbB3O4F3 shows a three-dimensional (3D) structure composed of 1D [B3O4F3] chains, [NaO3F3] and [RbO5F5] polyhedra. The structural evolution from NaRbB3O4F3 to RbB3O4F2, as well as the structural comparison between NaRbB3O4F3 and its identical stoichiometry compound, Li2B3O4F3 were discussed in detail. The IR spectrum verifies its structural validity. The spectral measurement shows that the reflectance has no obvious change in the range of 175–300 nm, and its cutoff edge is below 175 nm. In addition, theoretical calculations are carried out to understand its electronic structure and optical properties.  相似文献   

13.
Single crystals of Pb3O2(SeO3) have been prepared hydrothermally at 230 °C. The structure (orthorhombic, Cmc21, a = 10.529(2), b = 10.722(2), c = 5.7527(12)Å, V = 649.5(2)Å3) has been solved by direct methods and refined to R1 = 0.059 on the basis of 615 unique observed reflections (|Fo| = 4σF). The structure is based upon double [O2Pb3]2+ chains of edge‐sharing [OPb4]6+ tetrahedra. These [O2Pb3]2+ chains run parallel to [001], and their planes are parallel to (010). The pyramidal (SeO3)2— anions are located between the chains; their triangular oxygen atom bases lie parallel to (001) and all (SeO3)2— groups are pointing in the same direction. A short compilation of [O2M3] chains of oxocentred M4 tetrahedra in minerals and inorganic compounds is provided.  相似文献   

14.
Vibrational and 17O NMR spectroscopy in combination with quantum chemical calculations are used to investigate the hydrolysis of antimony(III) fluoride complexes. A hydrolytic decomposition of SbF3 and [SbF4]? is accompanied by oligomerization with the formation of edge-and corner-connected dimers ([Sb2O2F4]2?, [Sb2OF8]4?) and trimers ([Sb3O3F6]3?, [Sb3OF9]2?) with bridging oxygen atoms. The hydrolysis of [SbF4]? is also characterized by the presence in the solution of a discrete cation of [SbF5]2? which is least hydrolized. Only a partial isomorphic substitution of fluoride ion by hydroxide one is possible, which is reflected in the composition of K2Sb(OH)xF5?x (x = 0.3) crystals isolated from the fluoride aqueous solution.  相似文献   

15.
The direct fluorination of intimately mixed niobium and tantalum powders gives a range of mixed‐metal pentafluorides [NbxTa4‐xF20] (x = 1 2 , 2 3 , 3 4 ) as discreet species isostructural with tantalum pentafluoride (x = 0 1 ). The crystal structures of 1–4 are indistinguishable by X‐ray crystallography. Complex 1 crystallizes in the monoclinic space group C2/m with a = 9.5462(13), b = 14.3578(19), c = 5.0174(7) Å, β = 97.086(2)°, Z = 2. The geometry about the tantalum atom is distorted octahedral with 2 short and 2 slightly longer Ta‐Fterminal, and 2 Ta‐Fbridging distances. The angles at the bridging fluorine atoms are 172.9(5)°.  相似文献   

16.
Single Crystals of Y3F[Si3O10] with Thalenite-Type Structure Colourless, diamond-shaped single crystals of Y3F[Si3O10] (monoclinic, P21/n; a = 730.38(5), b = 1112.47(8), c = 1037.14(7) pm, β = 97.235(6)°, Z = 4) with thalenite-type structure are obtained upon the reaction of YF3 with Y2O3 and SiO2 (1 : 4 : 9 molar ratio) in evacuated silica tubes at 700 °C in the presence of CsCl as flux within seven days. The crystal structure consists of triangular [FY3]8+ cations and catena-trisilicate anions [Si3O10]8–, which exhibit a horseshoe-shape resulting from two vertex-shared terminal [SiO4] tetrahedra with both staggered and eclipsed conformation relative to the central one. The Y3+ cations have coordination numbers of seven plus one (Y1) or seven (Y2 and Y3), but only one F anion belongs to each and vice versa, the remainder ligands being oxygen members of [Si3O10]8– anions.  相似文献   

17.
Fluorine-19 and natural abundance 17O and 183W NMR spectroscopy were employed for the characterization of aqueous solutions of (NH4)2WO2F4 and (NH4)3WO3F3. Dissolution of the (NH4)2WO2F4 complex is accompanied by its partial acid hydrolysis to give the trans(mer)-dimer, [W2O5F6]4−, and unreacted cis-[WO2F4]2−. The cis(fac)-[W2O5F6]4− anion is the major soluble product resulting from the alkaline hydrolysis of (NH4)2WO2F4 along with the isolation of the solid (NH4)2WO3F2. In addition, the edge-bridging dimer, [W2O6F4]4−, and the cyclic trimer, [W3O9F6]6−, are also suggested as hydrolysis products. Decomposition of (NH4)3WO3F3 occurs in aqueous solution to give NH4WO3F.  相似文献   

18.
The reaction of fumaryl fluoride with the superacidic solutions XF/MF5 (X=H, D; M=As, Sb) results in the formation of the monoprotonated and diprotonated species, dependent on the stoichiometric ratio of the Lewis acid to fumaryl fluoride. The salts [C4H3F2O2]+[MF6] (M=As, Sb) and [C4H2X2F2O2]2+([MF6])2 (X=H, D; M=As, Sb) are the first examples with a protonated acyl fluoride moiety. They were characterized by low-temperature vibrational spectroscopy. Low-temperature NMR spectroscopy and single-crystal X-ray structure analyses were carried out for [C4H3F2O2]+[SbF6] as well as for [C4H4F2O2]2+([MF6])2 (M=As, Sb). The experimental results are discussed together with quantum chemical calculations of the cations [C4H4F2O2 ⋅ 2 HF]2+ and [C4H3F2O2 ⋅ HF]+ at the B3LYP/aug-cc-pVTZ level of theory. In addition, electrostatic potential (ESP) maps combined with natural population analysis (NPA) charges were calculated in order to investigate the electron distribution and the charge-related properties of the diprotonated species. The C−F bond lengths in the protonated dication are considerably reduced on account of the +R effect.  相似文献   

19.
Fluorooxoborates, benefiting from the large optical band gap, high anisotropy, and ever‐greater possibility to form non‐centrosymmetric structures activated by the large polarization of [BOxF4?x](x+1)? building blocks, have been considered as the new fertile fields for searching the ultraviolet (UV) and deep‐UV nonlinear optical (NLO) materials. Herein, we report the first asymmetric alkaline‐earth metal fluorooxoborate SrB5O7F3, which is rationally designed by taking the classic Sr2Be2B2O7 (SBBO) as a maternal structure. Its [B5O9F3]6? fundamental building block with near‐planar configuration composed by two edge‐sharing [B3O6F2]5? rings in SrB5O7F3 has not been reported in any other borates. Solid state 19F and 11B magic‐angle spinning NMR spectroscopy verifies the presence of covalent B?F bonds in SrB5O7F3. Property characterizations reveal that SrB5O7F3 possesses the optical properties required for deep‐UV NLO applications, which make SrB5O7F3 a promising crystal that could produce deep‐UV coherent light by the direct SHG process.  相似文献   

20.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号