首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Ion interaction reversed-phase liquid chromatography with octylammonium orthophosphate as the interacting reagent and a reversed-phase C18 column was applied to the identification and determination of nitrite and nitrate in Venice lagoon water. Interference by the high chloride concentration was systematically studied and the results obtained with different column packings were compared. With spectrophotometric detection at 230 nm, nitrite at 0.005 mg 1?1 can be detected and determined even in the presence of 0.70 M chloride. The dependence of the retention time of nitrite on the chloride concentration was studied for two reversed-phase columns with different packings. Concentrations of 0.30 ± 0.05 mg 1?1 of nitrite and 0.20 ± 0.05 mg 1?1 of nitrate were found in Venice lagoon water.  相似文献   

2.
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O22- and O2- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UVVis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NaNO3 are also obtained and compared with that of HTS.  相似文献   

3.
We propose the pseudobrookite Fe2TiO5 nanofiber with abundant oxygen vacancies as a new electrocatalyst to ambiently reduce nitrate to ammonia. Such catalyst achieves a large NH3 yield of 0.73 mmol h−1 mg−1cat. and a high Faradaic Efficiency (FE) of 87.6 % in phosphate buffer saline solution with 0.1 M NaNO3, which is lifted to 1.36 mmol h−1 mg−1cat. and 96.06 % at −0.9 V vs. RHE for nitrite conversion to ammonia in 0.1 M NaNO2. It also shows excellent electrochemical durability and structural stability. Theoretical calculation reveals the enhanced conductivity of this catalyst and an extremely low free energy of −0.28 eV for nitrate adsorption at the presence of vacant oxygen.  相似文献   

4.
Reduction of nitrate to nitrite takes place when the stored energy in the form of colour centres is released during dissolution of -irradiated NaCl crystals in aqueous sodium nitrate solution. Various parameters like dose, amount, storage time and particle size of irradiated NaCl salt which control the yield of nitrite have been studied. Similarly, the effect of concentration of NaNO3 and the role of precipitation on the yields of nitrite in aqueous TlNO3 and AgNO3 have been investigated. The energy transfer parameter has been determined as the ratio of G/NO 2 / obtained by the addition of irradiated NaCl to that of direct -radiolysis. The data permit the evaluation of the concentration of colour centres in the irradiated NaCl crystals on the basis of the mechanism of reduction of nitrate.  相似文献   

5.
The partial pressure of sodium nitrite in the system NaNO2-KNO3 was measured at 798, 823, and 848 K. The dependence of the logarithm of the NaNO2 pressure on inverse temperature is presented. Coefficients A and B of the Clausius-Clapeyron equation and the partial molar heats of vaporization are calculated. The activity and activity coefficient of sodium nitrite are determined. The dependences of ac- tivity and activity coefficient of sodium nitrite and potassium nitrate are presented as functions of composition of the NaNO2-KNO3 system. The consistency of the activity coefficients is verified using the Redlich-Kister integral.  相似文献   

6.
Second order derivative spectrophotometry was applied to the determination of nitrite and nitrate ions in bath solutions for alkaline black-oxidation of steel. The measurements were directly taken after dilution of the samples at λ = 336.4 nm for NO3 and λ = 390 nm for NO2 . The method was checked on artificial mixtures and applied to real samples containing approximately 5.5% NaNO2 and 6% NaNO3. The results agree well with those obtained by the standard manganometric method. Received: 8 July 1996 / Revised: 24 September 1996 / Accepted: 28 September 1996  相似文献   

7.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

8.
Alkaline-earth metal tungstates are synthesized in NaNO3-M(NO3)2 (M = Ca, Sr, Ba) eutectic melts. The synthesis is based on the exchange reaction of calcium, strontium, or barium nitrate with sodium tungstate.  相似文献   

9.
The isotropic lineshape of the v1 (A1) stretching mode of the nitrate ion in solutions of sodium nitrate has been studied at 25°C as a function of NaNO3 concentration ranging from 0.1 to 6M. The pressure dependence has been determined for 1 and 6M solutions at pressures ranging from 1 bar to 3 kbar. The isotropic band becomes more asymmetric with increasing concentration, and its v1 peak frequency undergoes a blue shift both with increased concentration and increased pressure. At low concentration the vibrational correlation function is well described by the Kubo formula, whereas at higher concentration it becomes more Gaussian. The experimental data indicate that the v1 vibrational lineshape in aqueous solutions of NaNO3 is dominated by strong intermolecular interactions which produce inhomogeneous broadening at higher concentration.  相似文献   

10.
《Analytical letters》2012,45(9):627-640
Abstract

The ultraviolet spectra of aqueous nitrite and nitrate solutions and of binary mixtures were obtained. By using an addition technique and a reference nitrate/nitrite solution it was possible to compensate for the interference caused by the overlapping of the nitrate and nitrite bands, which is normally a limiting factor in the analysis of mixtures of nitrite with large excesses of nitrate. The detection limit was 5 × 10?5 M NO2 ? which corresponded to a minimum detectable amount of 2.3 ppm NO2 ? in the presence of up to 20,000 times greater amount of NO3 ?. The accuracy was ± 0.6% and the standard deviation ± 0. 002.  相似文献   

11.
The salting-out effect has been characterized on the basis of the relative peak intensity of silica species, observed by FAB-MS (fast atom-bombardment mass spectrometry) in solutions of sodium chloride, sodium nitrate, sodium sulfate, calcium chloride, lithium chloride and magnesium chloride. A critical change in the peak intensity ratios of the linear and cyclic tetramers of silica against the sodium ion (Na+) concentrations was observed at Na+ concentration between 0.1 and 1 mol⋅dm−3. The degrees of the changes of these peak intensity ratios increased in the order NaNO3 < Na2SO4 < NaCl. In CaCl2 solutions, these peak intensity ratios changed significantly at Ca2+ concentrations between 0.05 and 0.5 mol⋅dm−3. The salting-out effect observed is the total change in the concentration of silica brought about by complex factors, such as the changing solubility of silicate complexes, the increases in the concentrations of different kinds of soluble silicate complexes induced by changes in the hydrophobicity and hydrophilicity of the solution, and the contribution of hydrolysis.  相似文献   

12.
An enhanced chemical denitrification process was studied as an alternative treatment of nitrate-rich wastewater which cannot be easily treated using conventional biological methods. To accelerate denitrification and to reduce the conversion to ammonia, nitrite reductants were added. In a batch test with the initial nitrate concentration of 500 mg NO 3 ? -N per L, sulfamic acid and zinc were found to be the best nitrite and metal reductants, respectively. In a column test with the initial nitrate concentration of 500 mg NO 3 ? -N per L, optimum results were experimentally obtained over a zinc scrap column with a 1.0 molar ratio of [NH2SO3H]/[NO 3 ? -N] and the recirculating flow rate of 6 L min?1 at pH 2.5. Approximately 98.8 % of nitrate anions were removed, and the observed reaction rate constant (k) was 0.135 min?1. Zinc consumption was reduced to 46.6 % compared to the procedure without sulfamic acid, and sulfamic acid consumption was reduced to 40 % compared to the results of our previous study. Based on these experimental results, it was concluded that chemical nitrate denitrification using sulfamic acid and zinc scrap is an effective alternative treatment protocol for nitrate-rich wastewater.  相似文献   

13.
Based on optical measurements, the kinetics of peroxynitrite accumulation in alkali nitrate crystals γ-irradiated at 310 K has been investigated. The initial radiation chemical yields were calculated to be 0.60±0.05, 0.14±0.03, 0.35±0.03, 0.65±0.04 (100 eV)−1 for NaNO3, KNO3, RbNO3, and CsNO3, respectively. The mechanism for the radiolysis of crystalline alkali nitrates is interpreted in terms of formation of the peroxynitrite ions and the nitrite ions from high-energy singlet and triplet excited states of the nitrate ions, respectively. These states can be generating under the radiationless transitions of electrons from the cation conductivity band into the anion conductivity band accompanied by the Auger excitation of the nitrate ions.  相似文献   

14.
Triethyloxonium tetrafluoroborate derivatization combined with direct headspace (HS) or SPME-gas chromatography-mass spectrometry (GC-MS) is proposed here for the simultaneous determination of nitrite and nitrate in seawater at micromolar level after conversion to their corresponding volatile ethyl-esters (EtO-NO and EtO-NO2). Isotopically enriched nitrite [15N] and nitrate [15N] are employed as internal standards and for quantification purposes. HS-GC-MS provided instrumental detection limits of 0.07 μM NO2 and 2 μM NO3. Validation of the methodology was achieved by determination of nitrite and nitrate in MOOS-1 (Seawater Certified Reference Material for Nutrients, NRC Canada), yielding results in excellent agreement with certified values. All critical aspects connected with the potential inter-conversion between nitrite and nitrate (less than 10%) were evaluated and corrected for by the use of the isotopically enriched internal standard.  相似文献   

15.
This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG°) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG° value which is mainly of enthalpic origin.  相似文献   

16.
Stability constants of the form F β 1(M)=[MF2+][M3+]−1[F]−1 (where [MF2+] represents the concentration of a yttrium or a rare earth element (YREE) complex, [M3+] is the free YREE ion concentration, and [F] is the free fluoride ion concentration) were determined by direct potentiometry in NaNO3 and NaCl solutions. The patterns of log10F β 1(M) in NaNO3 and NaCl solutions very closely resemble stability constant patterns obtained previously in NaClO4. For a given YREE, stability constants obtained in NaClO4 were similar to, but consistently larger than F β 1(M) values obtained in NaNO3 which, in turn, were larger than formation constants obtained in NaCl. Stability constants for formation of nitrate and chloride complexes ( and Cl β 1(M)=[MCl2+][M3+]−1[Cl]−1) derived from F β 1(M) data exhibited ionic strength dependencies generally similar to those of F β 1(M). However, in contrast to the somewhat complex pattern obtained for F β 1(M) across the fifteen member YREE series, no patterns were observed for nitrate and chloride complexation constants: neither nor Cl β 1(M) showed discernable variations across the suite of YREEs. Nitrate and chloride formation constants at 25 °C and zero ionic strength were estimated as log10  and log10Cl β 1o(M)=0.71±0.05. Although these constants are identical within experimental uncertainty, the distinct ionic strength dependencies of and Cl β 1(M) produced larger differences in the two stability constants with increasing ionic strength whereby Cl β 1(M) was uniformly larger than .  相似文献   

17.
Ethyl-substituted bis-triazinylpyridine (Et-BTP), a nitrogen containing soft-donor extractant, was used in investigations pertaining to the separation of Am3+ and Eu3+ from dilute nitric acid feed solutions by extraction chromatography using XAD-4 as the inert support, chlorinated dicarbollide as the modifier and 2-nitrophenyloctylether (NPOE) as the diluent. After carrying out a series of experiments, the optimum composition of the extractant mixture for the resin was found out to be 0.1 M Et-BTP and 0.025 M CCD in NPOE. Separation factor values were encouraging to carry out subsequent batch uptake studies at varying nitrate ion concentration which indicated favourable separation behaviour up to NaNO3 concentration of 2 M. Column studies have been carried out and conditions for elution and separation of Am3+ from Eu3+ have been found out. Long term stability of the resin was also investigated.  相似文献   

18.
Natural 15N abundances (δ15N values) of different soil nitrogen pools deliver crucial information on the soil N cycle for the analysis of biogeochemical processes. Here we report on a complete suite of methods for sensitive δ15N analysis in soil extracts. A combined chemical reaction of vanadium(III) chloride (VCl3) and sodium azide under acidic conditions is used to convert nitrate into N2O, which is subsequently analyzed by purge‐and‐trap isotope ratio mass spectrometry (PTIRMS) with a cryo‐focusing unit. Coupled with preparation steps (microdiffusion for collection of ammonium, alkaline persulfate oxidation to convert total dissolved N (TDN) or ammonium into nitrate) this allows the determination of the δ15N values of nitrate, ammonium and total dissolved N (dissolved organic N, microbial biomass N) in soil extracts with the same basic protocol. The limits of quantification for δ15N analysis with a precision of 0.5‰ were 12.4 µM for ammonium, 23.7 µM for TDN, 16.5 µM for nitrate and 22.7 µM for nitrite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Hong Yu  Hongjing Ai  Qian Chen 《Chromatographia》2009,70(7-8):1017-1022
Ion-interaction chromatography with direct conductivity detection has been used for analysis of nitrate and nitrite. Chromatographic separation was performed on a monolithic silica-based C18 column dynamically modified with tetrabutylammonium (TBA+). Using the optimized mobile phase, containing 2.0 mmol L?1 TBA+ and 0.8 mmol L?1 citrate (pH 6.0), delivered at a flow rate of 6.0 mL min?1, separation of five anions (chloride, nitrite, bromide, nitrate, and sulfate) was achieved in only 40 s at a column temperature of 30 °C. The detection limits for nitrate and nitrite were 0.74 and 0.92 mg L?1, respectively. The relative standard deviation (RSD, n = 5) of the retention times of nitrate and nitrite was 0.1% and RSD of chromatographic peak areas were 0.4 and 0.2%, respectively. The method was successfully used for analysis of the anions in groundwater. Recovery of nitrate and nitrite was 99.1 and 105%, respectively.  相似文献   

20.
Proton-ligand association constants of 1-benzoyl(1,2,4-triazol-3-yl)thiourea (BTTU) and its complex formation constants with some bivalent metal ions Ni(II), Co(II), Mn(II), Zn(II), and Cu(II), have been determined potentiometrically in 50% EtOH–H2O and 0.1 M NaNO3. The complexes formed in solution have a stoichiometry of 1:1 and 1:2 [M:L], where M represents the metal ion and L the BTTU ligand. The corresponding thermodynamic parameters are derived and discussed. The complexes are stabilized by enthalpy changes and the results suggest that complexation is an enthalpy-driven process. The effects of metal ion, ionic radius, electronegativity, and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3d transition metals follow the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+. The metal complexes were synthesized and characterized by elemental analyses, conductance, IR, 1H NMR, and magnetic measurements. The low magnetic moment of 0.11 BM for the Cu(II) complex is suggestive of dimerization through Cu–Cu interaction. The concentration distribution diagrams of the complexes were evaluated. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号