首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the steric barrier provided by the adsorption of the dispersant hypermer KD1 (a polyester/polyamine condensation polymer), stable and low-viscosity suspensions of SiC, Y(2)O(3), and Al(2)O(3) powder mixtures could be prepared in methyl ethyl ketone (MEK)/ethanol (E) solvent with solids loading as high as 60 vol%. The solvency of the dispersant in MEK/E decreased dramatically on cooling. Steady shear viscosity and oscillatory measurements were performed as a function of temperature for suspensions with different solids loading. The viscosity and elastic modulus of suspension increased with decreasing temperature and became more sensitive with the increase of solids loading. The suspensions with solids loading higher than 40 vol% could be solidified with decreasing temperature, but gelation temperature and gelation stiffness decreased with decreasing solids loading. The 60 vol% solid-loaded suspension was a stable and free-flowing fluid at 20 degrees C and gradually transformed to a very highly viscous and elastic system upon cooling to about 13 degrees C. Complete solidification occurred when the temperature was decreased to 5 degrees C. The gelation mechanism was mainly based on the collapse of the adsorbed layer as the temperature decreases, which induced incipient flocculation and formed a stiff network. The gelled body was further strengthened by separation of the dispersant from the suspension.  相似文献   

2.
In this work we present a theoretical model for the calculation of the electroviscous coefficient of a colloidal suspension. The treatment is not limited for dilute suspensions and includes the contribution of the overlapping between adjacent ionic layers. The development here used is based on a cell model, which is applicable to Newtonian suspensions under low shear conditions and without crystalline ordering. Also presented are a complete study of the new numerical results and comparisons with previous results. We find new behaviors for the case of moderate volume fractions that do not appear in the dilute limit.  相似文献   

3.
A previous model for the viscosity of moderately concentrated suspensions has been extended. The influence of a dynamic Stern layer (DSL), which produces an additional surface conductance at the electrolyte-particle interface, is included. The theoretical treatment is based on Happel's cell model with Simha's boundary conditions for the interparticle hydrodynamic interactions and on a dynamic Stern-layer model for ionic conduction on the particle surface according to Mangelsdorf and White (ref 39). The results are valid for arbitrary zeta potentials and double-layer thickness. Extensive theoretical predictions are shown and interesting new behaviors are found. The comparison with the results in the absence of additional surface conductance shows a great influence of this mechanism in the energy dissipation during the laminar flow of these suspensions. We conclude that the inclusion of a dynamic Stern layer will be required to match the predictions with the experimental results.  相似文献   

4.
Highly concentrated colloidal suspensions exhibit a discontinuous shear-thickening behaviour. The transition from a low to a high viscosity state is associated to a large energy dissipation. This effect could find applications in structural damping while the viscosity increase brings added stiffness. In the present work, highly concentrated suspensions of monodisperse spherical silica particles in polyethylene glycol were selected for their strong thickening at low critical shear rates. Their damping properties were characterized by measuring the energy dissipated per cycle at low frequency (below 2 Hz) during oscillatory tests using a rheometer. The influence of parameters such as particle concentration, size and frequency was investigated. Damping was found to overcome that of benchmark elastomeric materials only in high frequencies and high strain domains.  相似文献   

5.
The coagulation rate constant of submicron silica has been measured as a function of solution pH, salt concentration and hydroxypropyl cellulose (HPC) polymer concentration. Results show that the colloidal stability of silica is dominated by the cation concentration in the presence of salt in the pH range 3–9.5. The stability increases as cation concentration decreases. At low salt concentration and a minimum colloid stability was found in the intermediate pH range 4–8. These results show that differences in the literature values of the critical coagulation constant by relative light-scattering experiments can be explained by the use of the coagulation rate constant analysis. When HPC polymer was present in the solution, the colloid stability of the silica increased. The adsorption of polymer stabilizes the silica suspensions, both at low pH near the isoelectric point and at high ionic strength where it coagulates without the polymer. A monolayer coverage was necessary to provide steric stabilization. At 10–3 M KCl a smaller equilibrium concentration of HPC in solution is needed to give monolayer coverage and steric stabilization than at 1 M KCl and pH 4.2.  相似文献   

6.
The kinetics of aggregation and gelation of fumed silica suspended in ethanol were investigated as a function of volume fraction. At low particle concentrations, gelation is well described by aggregation into a primary minimum arising from hydrogen bonding and dispersion forces. The gelation is extremely slow due to an energetic barrier (approximately 25 kT) in the interparticle potential associated with solvation forces. The solvation forces also contribute to the formation of a secondary minimum in the interparticle potential. The depth of this minimum (approximately 3 kT) is sufficient that, at a critical particle concentration, long-range diffusion is arrested due to the short-range attractions and the cooperative nature of particle interactions, as described by mode coupling theory. The presence of the secondary minimum is also observed in the microstructure of the gels studied using X-ray scattering. These observations reinforce the importance of understanding the role of solvent-particle interactions in manipulating suspension properties.  相似文献   

7.
A long-lasting experience in the electrokinetics of suspensions has shown that the so-called standard model may be partly in error in explaining experimental data. In this model, the stagnant layer is considered nonconducting (Ksigmai=0), and only the diffuse layer contributes to the total surface conductivity (Ksigma=Ksigmad). In the present work, the authors analyze the consequences of assuming a nonzero stagnant layer conductivity on the permittivity of concentrated suspensions. Using a cell model to account for the particle-particle interactions, and a well established ion adsorption isotherm on the inner region of the double layer, the authors find the frequency-dependent electric permittivity of suspensions of spherical particles with volume fractions of solids up to above 40%. It is demonstrated that the addition of Ksigmai significantly increases the contributions of the double layer to the polarization of the suspension: the alpha or concentration polarization at low (kilohertz) frequencies, and the Maxwell-Wagner-O'Konski (associated with conductivity mismatch between particle and medium) one at intermediate (megahertz) frequencies. While checking for the possibility that the results obtained in conditions of Ksigmai not equal 0 could be reproduced assuming Ksigmai=0 and raising Ksigmad to reach identical total Ksigma, it is found that this is approximately possible in the calculation of the permittivity. Interestingly, this does not occur in the case of electrophoretic mobility, where the situations Ksigma=Ksigmad and Ksigma=Ksigmad+Ksigmai (for equal Ksigma) can be distinguished for all frequencies. This points to the importance of using more than one electrokinetic technique to properly evaluate not only the zeta potential but other transport properties of concentrated suspensions, particularly Ksigmai.  相似文献   

8.
In this paper, recent advances in the study of rheological behavior of concentrated bimodal suspensions are briefly reviewed. The predictive models are divided into two categories, namely, the effective volume fraction (or hard sphere scaling) approach and the separation of contributions approach. Predictions of both approaches are compared with experimental data of electrostatically and sterically stabilized suspensions. It is shown that the predictions of both hard sphere scaling and the scaling method of Zaman and Moudgil (J. Colloid Interface Sci. 212 (1999) 167) to separate the contributions of fine and coarse particles are in good agreement with the experimentally observed results. The approach by Dames, Morrison, Wilenbacher (Rheol. Acta 40 (2001) 434) to separate the hard-sphere and non-hard-sphere contributions is investigated using the aqueous silica and polystyrene suspensions respectively. A good agreement is shown for aqueous silica suspensions. However, significant differences between the predictions and experimental data are found for the sterically stabilized polystyrene suspensions, suggesting a more generalized expression is needed. As an attempt to classify the models on the viscosity of colloidal suspensions, the present study will provide guidelines for interpretation of experimental results and for the development of more comprehensive predictive methodologies for polydispersed colloidal dispersions.  相似文献   

9.
In this contribution, the dynamic electrophoretic mobility of spherical colloidal particles in a salt-free concentrated suspension subjected to an oscillating electric field is studied theoretically using a cell model approach. Previous calculations focusing the analysis on cases of very low or very high particle surface charge are analyzed and extended to arbitrary conditions regarding particle surface charge, particle radius, volume fraction, counterion properties, and frequency of the applied electric field (sub-GHz range). Because no limit is imposed on the volume fractions of solids considered, the overlap of double layers of adjacent particles is accounted for. Our results display not only the so-called counterion condensation effect for high particle charge, previously described in the literature, but also its relative influence on the dynamic electrophoretic mobility throughout the whole frequency spectrum. Furthermore, we observe a competition between different relaxation processes related to the complex electric dipole moment induced on the particles by the field, as well as the influence of particle inertia at the high-frequency range. In addition, the influences of volume fraction, particle charge, particle radius, and ionic drag coefficient on the dynamic electrophoretic mobility as a function of frequency are extensively analyzed.  相似文献   

10.
11.
Although a well-defined electrokinetic phenomenon, the primary electroviscous effect in dilute colloidal suspensions is still an unsolved problem. Most of the experimental tests of the different theories that we have studied have shown a lack of agreement. We have developed, during the last years, new theoretical approaches obtaining, finally, a much better agreement with the experimental results. The corrections are defined in two lines: first, it is accepted that ions present into the Stern layer, in which the fluid is stagnant, can tangentially move; second, it is accepted that the hydrodynamic interaction between colloidal particles exists although the suspensions are extremely diluted. The remarkable conclusion of our work is that the combination of both corrections should give correct theoretical results.  相似文献   

12.
The sedimentation velocities and concentration profiles of low-charge, monodisperse hydroxylate latex particle suspensions were investigated experimentally as a function of the particle concentration to study the effects of the collective particle interactions on suspension stability. We used the Kossel diffraction technique to measure the particle concentration profile and sedimentation rate. We conducted the sedimentation experiments using three different particle sizes. Collective hydrodynamic interactions dominate the particle-particle interactions at particle concentrations up to 6.5 vol%. However, at higher particle concentrations, additional collective particle-particle interactions resulting from the self-depletion attraction cause particle aggregation inside the suspension. The collective particle-particle interaction forces play a much more important role when relatively small particles (500 nm in diameter or less) are used. We developed a theoretical model based on the statistical particle dynamics simulation method to examine the role of the collective particle interactions in concentrated suspensions in the colloidal microstructure formation and sedimentation rates. The theoretical results agree with the experimentally-measured values of the settling velocities and concentration profiles.  相似文献   

13.
The kinetics of supramolecular crystallization of concentrated suspensions is three-dimensional and follows the Avrami-Erofeev equation: A=1-exp[-(kt)m], where m=4. The rate constant k is proportional to the probability of the appearance of a crystallization center in unit volume in unit time and the linear crystal growth rate, which is determined experimentally.  相似文献   

14.
The structure factors of colloidal silica dispersions at rather high volume fractions (from 0.055 to 0.22) were measured by small-angle X-ray scattering and fitted with both the equivalent hard-sphere potential model (EHS) and the Hayter-Penfold/Yukawa potential model (HPY). Both of these models described the interactions in these dispersions successfully, and the results were in reasonable agreement. The strength and range of the interaction potentials decreased with increasing particle volume fractions, which suggests shrinkage of the electrical double layer arising from an increase in the counterion concentration in the bulk solution. However, the interactions at the average interparticle separation increased as the volume fraction increased. The interaction ranges (delta) determined by the two models were very similar. Structure factors were also used to determine the size and volume fraction of the particles. The values of the size obtained from the structure factors were slightly larger than those obtained from the form factors; this difference is ascribed to the nonspherical shape and polydispersity of the colloidal particles. The volume fractions measured by these two methods were very similar and are both in good agreement with the independently measured results.  相似文献   

15.
The efficiency of electronic excitation energy transfer from photo-excited rhodamine 110 (Rh110, energy donor) to rhodamine B (RhB, energy acceptor) in an exhaustively deionized colloidal silica suspension has been studied. This colloidal suspension shows Bragg reflection due to the formation of colloidal crystals and the Bragg-peak wavelength is controllable by the volume fraction of the silica spheres. When the Bragg-peak wavelength matches with the fluorescence band of Rh110, a depletion was observed in the Rh110 fluorescence spectrum. This means the fluorescence of Rh110 is partially trapped due to the Bragg reflection inside the crystal lattice. In the coexistence of RhB, the enhancement of RhB fluorescence intensity was observed. These facts clearly indicate the trapped photon energy of Rh110 is efficiently transferred to RhB within the colloidal crystals. The quantitative measurements showed that the enhancement of the transfer efficiency is 20% (or slightly more) in the present experimental conditions.  相似文献   

16.
Concentrated suspensions of charged monodisperse spherical silica particles (MSSP) stabilized by alkalis or ammonia are able to crystallize at a certain destabilization. Crystal structures with the particles fixed at certain distances from each other show an isotropic normal mechanism of continuous growth with a rough phase boundary. The crystallization is determined by three parameters,víz. the concentration of particles, temperature, the thickness of the ion atmosphere around the particles and the concentration of counterions. The crystallization of MSSP suspensions is considered as a model of the supramolecular crystallization in the field of synthesis of mesoporous structures.  相似文献   

17.
The aggregation of concentrated aqueous silica suspensions is characterized by means of static light scattering. We use an in situ destabilization mechanism based on the enzyme-catalyzed hydrolysis of urea. This method enables us to continuously and homogeneously change the interparticle potential from repulsive to attractive without disturbing the aggregation process. Moreover, our electrostatically stabilized suspensions can be destabilized by two different methods. In the first method, the pH is shifted toward the isoelectric point of the particles ( Delta pH method), thereby leading to a decrease of their surface charge. In the second method, the ionic strength is continuously increased at constant pH ( Delta I method), leading to a compression of the electrical double layer around the charged particles. A laboratory-built flat-cell light-scattering instrument is used, which allows fast data acquisition and an adjustment of the sample cell thickness. To circumvent multiple scattering effects, we use a very small sample thickness ( approximately 13 microm). In addition, the refractive index difference between the aqueous phase and the particles is reduced by adding sucrose to the liquid phase of our suspensions. We are able to characterize the structural changes at the very early stages of the destabilization process, where no significant effects are yet detected in macroscopic rheological measurements. While during the Delta pH destabilization, the scattering curve shows significant changes only after some characteristic delay time, it changes continuously during the Delta I destabilization. The latter is attributed to the formation of a weak pre-gel structure in the suspensions, as a shallow secondary minimum appears in the interparticle potential. Data are evaluated by using a HMSA square-well structure factor model. Results are in good agreement with those predicted from DLVO theory.  相似文献   

18.
Structural ordering of monodispersed spherical silica particles (MSSP) occurs in ammonia stabilized concentrated suspensions obtained by tetraethoxysilane (TEOS) hydrolysis in alcohol-aqueous solutions in the ammonia concentration range from 0.0001 to 0.0008 mol/L. MSSP interaction follows the DLFO (Deryagin, Landau, Ferway, and Overbeck) mechanism when electrostatic repulsive forces between the particles predominate, and the structural ordering requires straightened conditions, which are provided by suspension concentrating through MSSP gravitational precipitation.  相似文献   

19.
Comparative osmotic compression experiments were performed on colloidal silica dispersions in the presence of various chloride salts at the same 0.01 M concentration with different counterions and highlighted the influence of ionic specificity on the resistance to water removal. These results were complemented with frontal ultrafiltration measurements that demonstrate modulation of the permeate flux according to the salt used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号