首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4-Bis(4-methylphenylthio)-1,3,2λ5,4λ5-dithiadiphosphetane-2,4-dithione: A New Reagent for Thiation of N,N-Disubstituted Amides As a new reagent for the thiation of amides, the easily accessible 2,4-bis(4-methylphenylthio)-1,3,2λ5,4λ5-dithiadiphosphetane-2,4-dithione ( 9 ) shows a remarkable selectivity. This selectivity – the preferred thiation of N,N-disubstituted amides – is complementary to the one of the well known Lawesson reagent. Thiation of diamides of type 2 with 9 leads via cyclization of the corresponding dithiodiamides to 1,3-thiazole-5(4H)-thiones 1 (Scheme 3).  相似文献   

2.
The solvating properties of formamide, N-methylformamide, dimethylformamide, N-ethylformamide and diethylformamide have been investigated by means of vapour pressure and conductivity measurements. For the salts and ions, resp. average solvation numbers have been calculated from vapour pressure data and limiting ionic conductances. The solvation numbers are used for a discussion of the influence of N-substituents on the solvating properties of the amides.

Mit 2 Abbildungen  相似文献   

3.
In1H-NMR spectra of amids with long-chain aliphatic N-substituents one observes—despite of the free mobility of the aliphatic chain—splitting of the signals of the terminal methyl groups which is caused by the hindered rotation of the amide bond.
  相似文献   

4.
By saturation of the 14N resonance, hindered internal rotation around the CN bond of the (thio)amide system is detected in the H-NMR spectra of the primary amides ( 1a to 1d ) and the thioamides ( 2a to 2g ). With the aid of coupling constants and benzene dilution shifts, it is possible to assign the signals of the amino group to the cis and the trans NH protons. From coalescence results free enthalpies of activation of hindered internal rotation are obtained, and their dependence on steric and electronic effects as well as the influence of the solvent are discussed.  相似文献   

5.
The interactions of a series of cations with acetamide and its homologs is investigated using1H-n.m.r. spectroscopy. The complexation of a cation by the amide induces changes in the electronic distribution of the ligands which lead to different chemical shifts in the n.m.r. spectra. The results are in agreement withab initio-calculations of the atomic population by the Mulliken Populations Analysis method using a minimal basis set.
  相似文献   

6.
The electrochemical behavior of complexes of fatty amides, synthesized from vegetable oil, with Cu(II) has been investigated. In this study, a platinum electrode was used in presence of DMSO as a medium. Reduction of Cu(II)/fatty amides complex was found with quasi-reversible reaction. The peak potential of voltammetric behavior of fatty amides is about ?0.77 V at a scan rate v = 0.1 V s?1 versus Ag|Ag+ electrode. This study shows that Cu(II)-fatty amides complex is poorly adsorbed on the electrode surface. Additionally, the copper complex form of fatty amides has a more stable structure than pure fatty amides to form the electrochemical reduction of the complex.  相似文献   

7.
Boron Trifluoride Catalyzed Reaction of 3-Amino-2H-azirines and Amides: Formation of 4,4-Disubstituted 4H-Imidazoles Reaction of trifluoroacetamide and 3-amino-2H-azirines 1 in refluxing MeCN affords 4-amino-2-(trifluoromethyl)-4H-imidazoles 5 in fair yields (Scheme 3). Less acidic amides do not react with 1 under similar conditions. Therefore, a procedure involving BF3-catalysis has been elaborated: the aminoazirine 1 in CH2Cl2 at ?78° is treated with BF3 · Et2O and then with a solution of the sodium salt of an amide in THF, prepared by addition of sodium hexamethyldisilazane at ?78°. The 4H-imidazoles of type 5 are formed in ca. 50% yield (Scheme 4). Reaction mechanisms for this ring enlargement of 1 are proposed in Schemes 5 and 6.  相似文献   

8.
The synthesis of novel achiral and chiral amides incorporating 1,3,4-oxadiazole ring are reported. All the synthesized amides are characterized 1H, 13C, FTIR and elemental analysis techniques. Synthesized compounds are screened for microbial and cytotoxic activities.  相似文献   

9.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

10.
PdII‐catalyzed C(sp3)?H olefination of weakly coordinating native amides is reported. Three major drawbacks of previous C(sp3)?H olefination protocols, 1) in situ cyclization of products, 2) incompatibility with α‐H‐containing substrates, and 3) installation of exogenous directing groups, are addressed by harnessing the carbonyl coordination ability of amides to direct C(sp3)?H activation. The method enables direct C(sp3)?H functionalization of a wide range of native amide substrates, including secondary, tertiary, and cyclic amides, for the first time. The utility of this process is demonstrated by diverse transformations of the olefination products.  相似文献   

11.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   

12.
For amides belonging to series RCONH2 (I), RCONHMe (II), RCONHPh (III), and RCONMe2 (IV) rate constants k1 (l mol-1 s-1) were determined (in acetonitrile at 25°C) specifying the nucleophilic reactivity of the oxygen atom in amides toward benzoyl chloride and diphenyl chlorophosphate. The lack of substrate selectivity in the reactions in question was established. For equal values of inductive constants * of the R substituents the reactivity sequence of amides with respect to both substrates is the same (I >> IV > II, and III > II), and it does not follow the corresponding sequence of basicities. A conclusion was drawn that both groups of reactions proceed through cyclic transition states resembling reagents: six-membered with amides I and III, and five-membered with amides II and IV.  相似文献   

13.
Novel and convenient methodology for the construction of N-substituted amide derivatives have been developed from nitriles and alcohols using propylphosphonic anhydride (T3P®). This methodology is an alternate approach to the synthesis of amides via Ritter reaction, which is one of the classical methods for the synthesis of N-substituted amides from nitriles and alcohols. In this approach, first T3P® activates the alcohol which is then attacked by nitrile to form N-substituted amides. This methodology can also apply for the synthesis of benzhydryl ether. This developed protocol is one of the novel applications of T3P®.  相似文献   

14.
The enantioselective desymmetrizing C−H activation of α-gem-dialkyl acyclic amides remains challenging because the availability of four chemically identical unbiased methylene C(sp3)−H bonds and increased rotational freedoms of the acyclic systems add tremendous difficulties for chemo- and stereocontrol. We have developed a method for the synthesis of acyclic aliphatic amides with α,β-contiguous stereogenic centers via PdII-catalyzed asymmetric arylation of unbiased methylene C(sp3)−H, in good yields and with high levels of enantio-, chemo- and diastereoselectivity (up to >99 % ee and >20:1 d.r.). Successive application of this method enables the sequential arylation of the gem-dialkyl groups with two different aryl iodides, giving a range of β-Ar1-β′-Ar2-aliphatic acyclic amides containing three contiguous stereogenic centers with excellent diastereoselectivity.  相似文献   

15.
The barriers to rotation of methylamide, ethylamide and the corresponding lithium amides have been computed at the abinitio 4-31G level. The barriers to rotation about the CN bond are higher for amides than for amines, but are lowered by coordination with Li+.  相似文献   

16.
Amide is one of the most widespread functional groups in organic and bioorganic chemistry, and it would be valuable to achieve stereoselective C(sp3)−H functionalization in amide molecules. Palladium(II) catalysis has been prevalently used in the C−H activation chemistry in the past decades, however, due to the weakly-coordinating feature of simple amides, it is challenging to achieve their direct C(sp3)−H functionalization with enantiocontrol by PdII catalysis. Our group has developed sulfoxide-2-hydroxypridine (SOHP) ligands, which exhibited remarkable activity in Pd-catalyzed C(sp2)−H activation. In this work, we demonstrate that chiral SOHP ligands served as an ideal solution to enantioselective C(sp3)−H activation in simple amides. Herein, we report an efficient asymmetric PdII/SOHP-catalyzed β-C(sp3)−H arylation of aliphatic tertiary amides, in which the SOHP ligand plays a key role in the stereoselective C−H deprotonation-metalation step.  相似文献   

17.
The 1H spectra of 37 amides in CDCl3 solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH2 protons reverse in going from CDCl3 to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχparl and Δχperp were for the aliphatic amides 10.53 and ?23.67 (×10?6 Å3/molecule) and for the aromatic amides 2.12 and ?10.43 (×10?6 Å3/molecule). The nitrogen anisotropy was 7.62 (×10?6 Å3/molecule). These values are compared with previous literature values. The 1H chemical shifts were calculated from the semi‐empirical approach and also by gauge‐independent atomic orbital calculations with the density functional theory method and B3LYP/6–31G++ (d,p) basis set. The semi‐empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge‐independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

A simple and efficient method for the synthesis of aryl amides via oxidative copper-catalyzed coupling of commercially available aryl boronic acids and bench stable Nα-protected amino-acid azides is reported. The potential utility of this protocol is demonstrated through a survey of diversely substituted aryl boronic acids and several side-chain functionalized amino-acid azides, leading to the preparation of the desired amidated products in good to excellent yields. This amide synthesis is suitable for the preparation of amides (such as peptide aryl amides and sterically hindered amino acids) that are not or hardly accessible via classical approaches.  相似文献   

19.
The reaction mode of the nickela five-membered ring complexes, prepared from phenyl isocyanate and the alkenes ethene, propene and styrene at (Lig)Ni0 systems, with oxidizing reagents such as FeCl3 and iodine are reported. Depending on the ligands, either unsaturated acid amides are formed or α,ω-diacid amides result by intermolecular CC bond formation. In this way the azanickela seven-membered ring complexes yield linear 1,8-diacid amides.  相似文献   

20.
The chemical shifts of amino acid N-carboxyanhydrides (NCAs) and cyclic or linear urethanes are less sensitive to solvent effects than those of amides and lactams. The values of the one-bond 15N? 1H coupling constants depend on the solvent and are 5-8 Hz larger than those of ureas and amides. The 15N? 13C coupling constant of the N? CO group is also unusually high, while that of the N—CH group lies within the range known for N-acylated aliphatic amines. The one-bond 15N? 13C coupling constant was found to be insensitive to conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号