共查询到20条相似文献,搜索用时 15 毫秒
1.
Tzeng BC Chen BS Chen CK Chang YP Tzeng WC Lin TY Lee GH Chou PT Fu YJ Chang AH 《Inorganic chemistry》2011,50(12):5379-5388
A series of Re(I) complexes, [Re(CO)(3)Cl(HPB)] (1), [Re(CO)(3)(PB)H(2)O] (2), [Re(CO)(3)(NO(3))(PB-AuPPh(3))] (3), and [Re(CO)(3)(NO(3))(PB)Au(dppm-H)Au](2) (4) [HPB = 2-(2'-pyridyl)benzimidazole; dppm = 2,2'-bis(diphenylphosphinomethane)], have been synthesized and characterized by X-ray diffraction. Complex 1, which exhibits interesting pH-dependent spectroscopic and luminescent properties, was prepared by reacting Re(CO)(5)Cl with an equimolar amount of 2-(2'-pyridyl)benzimidazole. The imidazole unit in complex 1 can be deprotonated to form the imidazolate unit to give complex 2. Addition of 1 equiv of AuPPh(3)(NO(3)) to complex 2 led to the formation of a heteronuclear complex 3. Addition of a half an equivalent of dppm(Au(NO(3)))(2) to complex 2 yielded 4. In both 3 and 4, the imidazolate unit acts as a multinuclear bridging ligand. Complex 4 is a rare and remarkable example of a Re(2)Au(4) aggregate in combination with μ(3)-bridging 2-(2'-pyridyl)benzimidazolate. Finally, complex 2 has been used to examine the Hg(2+)-recognition event among group 12 metal ions. Its reversibility and selectivity toward Hg(2+) are also examined. 相似文献
2.
Khalil MM Aboaly MM Ramadan RM 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,61(1-2):157-161
The reactions between [M(3)(CO)(12)], M = Ru and Os, and salicylideneimine-2-thiophenol Schiff base in THF under reflux gave [Ru(CO)(4)(satpH)] and [Os(CO)(3)(satpH(2))] complexes. Structures of the two complexes were proposed on the basis of spectroscopic studies. Magnetic study of [Ru(CO)(4)(satpH)] suggested that a change in oxidation state of the ruthenium atom from zero to +1 was achieved via oxidative addition of the SH group with a proton displacement to give a low-spin d(7) electronic configuration. UV-Vis spectra of the two complexes in different solvents exhibited visible bands due to metal-to-ligand charge transfer. Electrochemical investigation of the free ligand and complexes showed some cathodic and anodic irreversible peaks due to interconversions through electron transfer. 相似文献
3.
Adams CJ Connelly NG Goodwin NJ Hayward OD Orpen AG Wood AJ 《Dalton transactions (Cambridge, England : 2003)》2006,(29):3584-3596
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors). 相似文献
4.
Mixed ligand complexes of the type Ru(pq)(2)(PP)(2+) (pq = 2,2'-pyridylquinoline and PP = one bidentate or two monodentate phosphine ligands) have been prepared from the appropriate phosphine and Ru(pq)(2)Cl(2). The room temperature absorption spectra and low temperature (77 K) emission spectra, emission lifetimes, and quantum yields have been measured for the series of complexes and compared with those of Ru(pq)(3)(2+) and analogous Ru(bpy)(2)(PP)(2+) complexes (bpy = 2,2'-bipyridine) where possible. Emission spectra have been fit using a single mode Franck-Condon analysis. The visible absorption bands and emission bands are assigned to MLCT transitions that are blue shifted relative to Ru(pq)(3)(2+), while the emission lifetimes and quantum yields are increased. The trends in the nonradiative rate constants, k(nr), are described in terms of the energy gap, E(0), and the Huang-Rhys factor, S(M), which were obtained from the spectral fittings, and are correlated with the phosphine ligand structures. 相似文献
5.
Five new 2-(2'-pyridyl)benzimidazole derivative ligands, 1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,4-bmb), 4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl (bmbp), 1-bromo-4-[2-(2'-pyridyl)benzimidazolyl]benzene (Brmb), 1,3-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,3-bmb), and 1,3,5-tris[2-(2'-pyridyl)benzimidazolyl]benzene (tmb), have been synthesized by Ullmann condensation methods. The corresponding mononuclear and polynuclear PtII complexes, Pt2(1,4-bmb)Ph4 (1), Pt2(bmbp)Ph4 (2), Pt(Brmb)Ph2 (3), Pt2(1,3-bmb)Ph4 (4), and Pt3(tmb)Ph6 (5), have been obtained by the reaction of the appropriate ligand with [PtPh2(SMe2)]n. The structures of the free ligands 1,4-bmb, bmbp, and tmb, as well as the complexes 1-3, were determined by single-crystal X-ray diffraction. All ligands display fluorescent emissions in the purple/blue region of the spectrum at ambient temperature and phosphorescent emissions in the blue/green region at 77 K, which are attributable to ligand-centered pi --> pi* transition. No ligand-based emission was observed for the PtII complexes 1-5. All PtII complexes display orange/red emissions at 77 K in a frozen solution or in the solid state, attributable to metal-to-ligand charge transfers (MLCT). Variable-temperature 1H NMR experiments establish that complexes 1, 4, and 5 exist in isomeric forms in solution at ambient temperature due to the hindered rotation of the square PtC2N2 planes in the complexes. 相似文献
6.
7.
Khenglawt Pachhunga Bruno Therrien Kevin A. Kreisel Glenn P.A. Yap Mohan Rao Kollipara 《Polyhedron》2007
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis. 相似文献
8.
Naeem S Thompson AL White AJ Delaude L Wilton-Ely JD 《Dalton transactions (Cambridge, England : 2003)》2011,40(14):3737-3747
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6). 相似文献
9.
The synthesis and characterisation of ruthenium(II) complexes with 2-amidobenzimidazoles are reported. The complexes RuCl2(DMSO)4 and RuCl2(PPh3) react with 2-(acetamido)benzimidazole (AB) and 2-(benzamido)benzimidazole (BB) it acetone to give products of the type [Ru(L)2(N−O)2]Cl2 [L=DMSO, PPh3, N−O=AB, BB). The displacement reactions are faster in the case of methyl (AB) than phenyl (BB) substituted ligands. The
ligands are bifunctional chelating agents coordinating through the tertiary nitrogen of benzimidazole ring and amide oxygen.
The complexes are characterised based on their elemental analysis, conductivity data, infrared,1H and31P nmr spectra. Acis-geometry is proposed for all the complexes reported. 相似文献
10.
《Journal of Coordination Chemistry》2012,65(8):1476-1486
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple. 相似文献
11.
The mixed-valence systems meso- and rac-[{M(bpy)2}2(mu-BL)]5+ {M = Ru, Os; BL = a series of polypyridyl bridging ligands such as 2,3-bis(2-pyridyl)benzoquinoxaline (dpb)} are characterized by multiple intervalence charge transfer (IVCT) and interconfigurational (IC) bands in the mid-infrared and near-infrared (NIR) regions. Differences in the relative energies of the IC transitions for the fully oxidized (+6) states of the osmium systems demonstrate that stereochemical effects lead to fundamental changes in the energy levels of the metal-based dpi orbitals, which are split by spin-orbit coupling and ligand-field asymmetry. An increase in the separation between the IC bands as BL is varied reflects the increase in the degree of electronic coupling through the series of ruthenium and osmium complexes. The increase in the IVCT bandwidths for the former is therefore attributed to the increase in the separation of the three underlying components of the bands. Stark effect measurements reveal small dipole moment changes accompanying IVCT excitation in support of the localized-to-delocalized or delocalized classification for the dinuclear ruthenium and osmium systems. 相似文献
12.
A. M. A. El-Sayed Hamdy F. M. Mohamed Anmed A. A. Boraei 《Radiation Physics and Chemistry》2000,58(5-6):791-795
Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes.
The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred from the IR-spectral data. 相似文献
13.
Vázquez SR Rodríguez MC Mosquera M Rodríguez-Prieto F 《The journal of physical chemistry. A》2007,111(10):1814-1826
The influence of solvent, temperature, and viscosity on the phototautomerization processes of a series of o-hydroxyarylbenzazoles was studied by means of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. The compounds studied were 2-(2'-hydroxyphenyl)benzimidazole (HBI), 2-(2'-hydroxyphenyl)benzoxazole (HBO), 2-(2'-hydroxyphenyl)benzothiazole (HBT), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (HPyBI), and the new derivative 2-(3'-hydroxy-2'-pyridyl)benzoxazole (HPyBO), this one studied in neutral and acid media. All of these compounds undergo an excited-state intramolecular proton transfer (ESIPT) from the hydroxyl group to the benzazole N3 to yield an excited tautomer in syn conformation. A temperature- and viscosity-dependent radiationless deactivation of the tautomer has been detected for all compounds except HBI and HPyBI. We show that this radiationless decay also takes place for 2-(3-methyl-1,3-benzothiazol-3-ium-2-yl)benzenolate (NMeOBT), the N-methylated analog of the tautomer, whose ground-state structure has anti conformation. In ethanol, the radiationless decay shows intrinsic activation energy for HPyBO and HBO; however, it is barrierless for HBT and NMeOBT and controlled instead by the solvent dynamics. The relative efficiency of the radiationless decay in the series of molecules studied supports the hypothesis that this transition is connected with a charge-transfer process taking place in the tautomer, its efficiency being related to the strength of the electron donor (dissociated phenol or pyridinol moiety) and electron acceptor (protonated benzazole). We propose that the charge transfer is associated with a large-amplitude conformational change of the tautomer, the process leading to a nonfluorescent charge-transfer intermediate. The previous ESIPT step generates the structure with the suitable redox pair to undergo the charge-transfer process; therefore, an excited-state intramolecular coupled proton and charge transfer takes place for these compounds. 相似文献
14.
The effect of the microenvironment of a Nafion membrane on the excited-state proton transfer (ESPT) of 2-(2'-pyridyl)benzimidazole (2PBI) has been investigated by steady-state and time-resolved fluorescence spectroscopy. The mechanism of the ESPT is found to depend remarkably on the water content of the membrane. In the protonated form of the membrane, ESPT is found to involve the dicationic (D) form of the fluorophore, whereas in cation-exchanged membranes, it is found to involve the monocation (C). The change in the mechanism and extent of ESPT in cation-exchanged membranes can be explained by considering dehydration of the membrane as well as the less acidic environment around the 2PBI molecules. The slow dynamics is found to result from two factors, namely, slow and incomplete solvation of the transition state, leading to a slowing down of the proton-transfer process, and a slow solvation of the polar tautomeric excited state. 相似文献
15.
《Journal of Coordination Chemistry》2012,65(10):1047-1055
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulphoxide with 2-aminobenzimidazole are reported. Three different formulations exist; [cis-RuCl2(SO)3(2-ABZ)]; [trans-RuCl2(SO)3)(2-ABZ)]; and [trans-RuCl4(SO)(2-ABZ (where SO?=?dimethylsulphoxide(DMSO)/tetramethylenesulphoxide(TMSO); 2-ABZ?=?2-aminobenzimidazole). These complexes are characterized by elemental analysis, conductivity magnetic susceptibility, 1H-NMR, 13C{1H}-NMR and electronic spectroscopy. 相似文献
16.
Ruthenium halides (Cl and Br) react with monotertiary arsines-Ph2RAs (R=Me, Et, Pr
n
) in methoxyethanol, in the presence of aq. formaldehyde to give monocarbonyl complexes of ruthenium(II) of the type RuX2(CO) (Ph2RAs)3. Carbonylation of an ethanolic solution containing ruthenium trichloride and the arsine at room temperature yieldtrans dicarbonyl compounds of the formula RuCl2(CO)2 (Ph2RAs)2. The osmium monocarbonyls OsX2(CO) (Ph2RAs)3 (X=Cl, Br; R=Me, Et) react with NaBH4 in methanol to yield complexes of the composition OsHX(CO) (Ph2RAs)3. The ruthenium analogues RuHCl(CO) (Ph2RAs)3 have also been made. Structures have been assigned to all these compounds on the basis of IR and NMR spectral results. 相似文献
17.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes. 相似文献
18.
19.
Iodine-poly(2-vinylpyridine-co-styrene-co-divinylbenzene) charge transfer complexes with antibacterial activity 总被引:1,自引:0,他引:1
Angela Cristina Jandrey Mônica Regina Marques Palermo de Aguiar José Luiz Mazzei 《European Polymer Journal》2007,43(11):4712-4718
In this work, we have developed three different copolymers based on 2-vinylpyridine, styrene and crosslinked with divinylbenzene (10-30 mol%). The copolymers were morphologically and chemically characterized by apparent density, swelling degree, elemental analysis, Fourier transform infrared spectrophotometry and optical microscopy. The formation of iodine complexes with these copolymers was carried out by two different procedures: with solvent, or not. The influence of the copolymers structure on the capacity of anchoring iodine has been investigated. The antibacterial properties of polymeric charge transfer complexes were determined towards 103-107 cells/mL dilutions from the auxotrophic AB1157 Escherichia coli strain. 相似文献
20.
Two mixed ligand complexes of ruthenium(ii) [Ru(bzimpy)(bpy)(OH(2))](2+) (1) and [Ru(bzimpy)(phen)(OH(2))](2+) (2) have been synthesized and characterized by FAB mass, (1)H NMR, cyclic voltammetry and spectroelectrochemical measurements. Controlled potential electrolysis of these complexes results in the conversion of ruthenium(ii) to ruthenium(iii) at 0.6 V and ruthenium(iii) to ruthenium(iv) at 0.8 V vs. SCE. The binding constant of these complexes with DNA has been determined electrochemically and found to be (3.58 +/- 0.25) x 10(4) and (2.87+/- 0.2) x 10(4) M(-1). Viscosity measurements suggest that these complexes bind with DNA through intercalation. Such intercalative binding to DNA has been found to induce chirality to the two complexes. Electrochemically generated ruthenium(iv) species of these complexes have been found to bring about oxidative cleavage in DNA. 相似文献