首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 ? in the singlet ground state and 2.568 ? in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.  相似文献   

2.
Abstract— –Problems associated with the protolytic equilibria of thionine and related molecules in their lowest excited electronic states were investigated. The theoretical arguments are based on semi-empirical SCF MO (CI) calculations for the π-electronic system of these molecules; all singly excited configurations were included in the CI. The results indicate that the basic form of thionine in its ground, first excited singlet and lowest triplet state is protonated at the heterocyclic N atom. The difference of the p K values of these three states can be explained in terms of the calculated charge densities. The photochemical reactivity of the lowest triplet of the acidic form of thionine (3TH22+) differs greatly from that of the lowest triplet of the basic form (3TH+). Some arguments for the assignment of nπ* character to 3TH22+ and ππ* character to 3TH+ are advanced.  相似文献   

3.
2-Phenyl-2H-benzotriazole exhibits a planar molecular conformation both in its ground electronic state (S0) and its first excited singlet (S1) and triplet state (T1). However, introducing one or two methyl groups in the ortho positions of the phenyl ring causes the aromatic systems in the compound to lose their coplanarity in both S0 and T1 electronic states. On the other hand, 2-(2-methylphenyl)-2H-benzotriazole regains such coplanarity in its first excited singlet state S1, giving rise to population inversion that could be used to generate stimulated radiation around 350 nm.

As shown in this work, the effectiveness of the ISC process in these compounds is markedly dependent on the twisting angle, θ, of the structure; accordingly, ISC occurs to a negligible extent in a planar compound such as 2-phenyl-2H-benzotriazole, where θ = 0°. This evidence supports the assumption that planar molecular forms of the TIN-P photoprotectors are more photostable than non-planar ones due to the non effective generation via ISC of their triplet states.  相似文献   


4.
Photoaquation in compounds II and III by direct excitation into a photoactive triplet excited state is reported. The location of the singlet to triplet transition in compound III is estimated by a combination of the action spectrum for photoaquation in the region between 520 and 600 nm and the phosphorescence spectrum at 77 K. The significant increment of the reactivity (10-fold) of the triplet states in II and III as compared to that in I is explained in terms of increasing sigma-donation from the phen ligands stabilizing the pentacoordinated rhodium intermediate formed by chloride expulsion.  相似文献   

5.
Abstract— The lowest excited singlet-state dissociation constants (pKSa) of bromosubstituted pyridines, quinolines, and isoquinolines were determined from the pH-dependent shifts in their electronic absorption spectra. The lowest excited triplet-state dissociation constants (pKTa) of bromosubstituted quinolines and 4-bromoisoquinoline were obtained from the shifts of the 0–0 phosphorescence bands measured in rigid aqueous solution at 77 K. The pKSa values indicate that the basicity of these brominated nitrogen heterocycles is increased in the lowest excited singlet state by 2 to 10 orders of magnitude as compared with the ground state. The pKTa values are found to be significantly different from the corresponding ground-state pKa values, indicating that the basicity of bromoquinolines is increased in the lowest excited triplet state by 1.7 to 3.0 pK units. The enhancement of the excited singlet-and triplet-state basicity of brominated nitrogen heterocycle derivatives as compared with the unsuhstituted parent compounds is attributed to the increased electron-donor conjugative interactions of the bromine atom pπ orbitals with π orbitals in the lowest excited singlet and triplet state.  相似文献   

6.
Local density and generalized gradient approximation time-dependent density functional methods have been used for calculation of the singlet and triplet excited states of nickel-porphine, Ni-tetraphenyloporphine, and Ni-octaethyloporphyrine. Special attention is paid to metal-ligand transitions and d-d transitions. It is shown that the lowest exited singlet states of the three compounds can be described as a transfer of an electron from the porphine ring to the d(x2-y2) orbital of the nickel atom. On the other hand, the lowest excited triplet state arises from promotion of an electron between two nickel d orbitals, an occupied d(z2) and an empty d(x2-y2). It is proposed that a rapid quenching of the excited singlet states is due to an ultrafast intersystem crossing between 1Eg)and 3Eg or 3B1g states.  相似文献   

7.
Quantum-chemical calculations of the electronic structure of molecules of model compounds of lignin in the ground and electronically excited states have been made by the CNDO/S method. The paper gives results on the energies and strengths of the oscillators of the electronic transitions and on the type of excited singlet and triplet states, shows the main configurations of the HOMOs and LUMOs participating in the transitions and their energies and statistical weights, and gives the distribution of charges and their redistribution on the passage of the molecules from the ground into the excited states. Donor-acceptor interactions in the molecules under investigation are discussed on the basis of the results obtained.Siberian Scientific-Research Institute of Pulp and Board, Bratsk. A. A. Zhdanov Irkutsk State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 265–274, March–April, 1988.  相似文献   

8.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

9.
Steady state absorption and fluorescence as well as the time resolved absorption studies in the pico and subpicosecond time domain have been performed to characterize the excited singlet and triplet states of Michler's ketone (MK). The nature of the lowest excited singlet (S1) and triplet (T1) states depends on the polarity of the solvent - in nonpolar solvents they have either pure nπ * character or mixed character of nπ * and ππ * states but in more polar solvents the states have CT character. Concentration dependence of the shapes of the fluorescence as well the excited singlet and triplet absorption spectra provide the evidence for the association of the MK molecules in the ground state.  相似文献   

10.
By mimicking the molecular structure of 4,4'-bis(N-carbazolyl)-2,2'-biphenyl (CBP), which is a widely used host material, a new series of host molecules (carbazole-endcapped heterofluorenes, CzHFs) were designed by linking the hole-transporting carbazole to the core heterofluorene molecules in either meta or para positions of the heterofluorene. The aromatic cores considered in this study are biphenyl, fluorene, silafluorenes, germafluorenes, carbazole, phosphafluorene, oxygafluorene, and sulfurafluorene. To reveal their molecular structures, optoelectronic properties and structure-property relationships of the proposed host materials, an in-depth theoretical investigation was elaborated via quantum chemical calculations. The electronic structures in the ground states, cationic and anionic states, and lowest triplet states of these designed molecules have been studied with emphasis on the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), energy gaps (E(g)), triplet energy gaps ((3)E(g)), as well as some other electronic properties including ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ), triplet exciton generation fraction (χ(T)), spin density distributions (SD), and absorption spectra. These photoelectronic properties can be tuned by chemical modifications of the heteroatom and the carbazole substitution at different positions. This study provides theoretical insights into the nature of host molecules, and shows that the designed CzHFs can meet the requirements of the host materials for triplet emitters.  相似文献   

11.
Superexchange interactions in alkali fullerides AC(60) are derived for C(60) molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C(60) molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C(60)-A-C(60))(-) with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C(60) molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C(60) molecules and A atoms in the polymer crystal, we consider 180 degrees and 90 degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at approximately 20 K. For T<20 K there appear strong spin correlations for the 180 degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC(60) in the polymerized and in the quenched cubic phase.  相似文献   

12.
Room-temperature phosphorescence (RTP) emitters have attracted significant attention. However, purely organic RTP emitters in red to near-infrared region have not been properly investigated. In this study, a series of naphthalenediimide−halobenzoate-linked molecules are synthesized, one of which exhibits efficient RTP properties, showing red to near-infrared emission in solid and aqueous dispersion. Spectroscopic studies and single-crystal X-ray diffraction analysis have shown that the difference in the stacking modes of compounds affects the optical properties, and the formation of intermolecular charge-transfer complexes of naphthalenediimide−halobenzoate moiety results in a bathochromic shift of absorption and RTP properties. The time-dependent density functional theory calculations showed that the formation of charge-transfer triplet states and the external heavy atom effect of the halogen atom enhance the intersystem crossing between excited singlet and triplet states.  相似文献   

13.
14.
The electronic absorption spectra and electronic structure of yttrium quinaldinates with an island and polymer structure were studied. A comparative analysis of the energies of the singlet and triplet excited states, the total energies of complex compounds in the ground state, and Mulliken’s bond overlap populations was performed by the TD-DFT method with the B3LYP density functional. For yttrium quinaldinate with a polymer structure, the distance between the highest occupied and lowest unoccupied orbitals was found to be longer than for the compound with an island structure. The transition energies were shifted to the blue region, which accounts for the higher stability of the polymer compound.  相似文献   

15.
A theoretical study of the low-lying singlet and triplet states of ClONO is presented. Calculations of excitation energies and oscillator strengths are reported using multireference configuration interaction, MRD-CI, methods with the cc-pVDZ + sp basis set. The calculations predict the dominant transition, 4(1)A' <-- 1(1)A', at 5.70 eV. The transition 2(1)A' <-- 1(1)A', at 4.44 eV, with much lower intensity nicely matches the experimental absorption maximum observed around 290 nm (4.27 eV). The potential energy curves for both states are found to be highly repulsive along the Cl-O coordinate implying that direct and fast dissociation to the Cl + NO2 products will occur. Photodissociation along the N-O coordinate is less likely because of barriers on the order of 0.3 eV for low-lying excited states. A comparison between the calculated electronic energies related to the two dominant excited states of ClONO and BrONO indicates that the transitions lie about 0.6 eV higher if bromine is replaced by chlorine. The stratospheric chemistry implications of ClONO and BrONO are discussed.  相似文献   

16.
The decay processes of the lowest excited singlet and triplet states of five heteropsoralens (HPS) were investigated by steady-state and shift-phase fluorometry and by laser-flash photolysis in different solvents. The emission spectra of HPS are detectable only in trifluoroethanol (TFE), where fluorescence lifetimes (τF) and quantum yields (φF) were measured. The triplet lifetimes (τT), triplet (φT) and singlet-oxygen production (φΔ) quantum yields were determined in benzene, ethanol and TFE by laser-flash photolysis. Semiempirical (INDO/1-CI) calculations allowed the nature of the lowest excited singlet and triplet states and transition probabilities to be obtained. Theoretical and experimental results indicate that the two lowest excited singlet states S1 and S2 of HPS are close-lying and different in nature (π,π* and n,π*). The "proximity effect" between these two states controls the photophysical properties of HPS as it does for the other furocoumarins. However, HPS have a peculiar behavior with respect to the related compounds because they are fluorescent and have, in three cases, detectable intersystem crossing only in TFE. This behavior can be tentatively explained by a different energy gap and/or order between the S1 and S2 states.  相似文献   

17.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

18.
Abstract— –Estimation of lowest excited triplet and singlet state dissociation constants of some nitro-aromatic acids and bases, from shifts in their phosphorescence and absorption spectra, respectively, indicate that intramolecular charge transfer to the nitro group is much more important in the lowest excited singlet state than in the ground or lowest excited triplet states. As a result, the effect of a nitro group on the acidity of the lowest excited singlet state of an acid or base is more exaggerated than that on the ground or lowest excited triplet state of the same compound. Furthermore, the basicity of the nitro group is greatly enhanced in the lowest excited singlet state. On this basis the increased rate of photoreduction of nitrobenzene in acidic solutions is found to be thermodynamically unfeasible in the lowest excited triplet state. Although the reaction is thermodynamically feasible in the lowest excited singlet state, the short lifetime of that state may make the reaction kinetically unfeasible. Rate-Hammett acidity profiles are therefore inadequate to alone establish the mechanism of photoreduction of nitrobenzene.  相似文献   

19.
Abstract— The lowest excited singlet and triplet states of coumarin, psoralen, and 4-hydroxy-coumarin have been assigned to the (π,π * ) type on the basis of the luminescence spectroscopy and MO calculations. The mechanism of photocycloaddition of courmarin and psoralen to thymine has been described in terms of the perturbational MO model and MO reactivity indices. All possible cycloaddition patterns have been examined. Results suggest that the 3,4-bond of coumarin in the excited state is somewhat more reactive than the same bond of psoralen in the excited state. It is also predicted that the 3,4-bond of psoralen in the triplet state is more reactive than the 4', 5'-bond. The results have been favorably correlated with the electronic characteristics of excited coumarin molecules and with available experimental data on the relative yields of photoadducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号