首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The special nature of the outer-most water-rich region of theL 2-phase in the ternary system sodium octanoate-octanoic acid-water is evidenced by its somewhat turbid appearance and by the character of its equilibria with adjacent phases. The phase contains aggregated acid sodium octanoate which is dispersed in a very dilute aqueous solution of sodium octanoate. The acid octanoate has the composition 1 NaC82 HC8x H2O and is composed of closely packed amphiphilic units, all with the polar groups in the same direction. This acid soap obviously forms double-layered aggregates with the lipophilic hydrocarbon chains pointing inwards and the polar groups pointing outwards towards the surrounding bulk-water. The phase is formed when octanoic acid is added to theL 1-phase of the system just above the l.a.c.; in this aqueous solution, the acid reacts with dissolved acid octanoate 1 NaC81 HC8x H2O and that results in the formation of the slightly soluble acid soap 1 NaC8 2 HC8x H2O that separates as a new phase, the turbidL 2 phase. On further addition of octanoic acid, the content of the mentioned acid soap increases until the solution phase is transformed into a liquid crystalline lamellarD-phase with the same acid soap composition. This formation of acid soap 1 NaA2 HA on addition of fatty acid to the dilute soap solution just above the l.a.c., has been known for a long time to occur in various systems containing a long-chain sodium soap. However, at suitably low temperatures, the reaction in these systems does not result in separation of the acid soap in the liquid crystalline, but in the solid crystalline state.  相似文献   

2.
The dependence of alcohol chain length on the isothermal phase behavior of the ternary systems hexadecylrrimethylammonium bromide/alcohol/water has been investigated. A liquid crystalline phase (the normal hexagonal one) occurs in the phase diagrams along the surfactant/water axis and this phase extends in the interior of the diagrams.When the alcohol is methanol, ethanol or butanol, there is in the ternary phase diagram a continuous solution region from the water to the alcoholic corner, and in the butanol case, in addition, a small region of lamellar liquid crystalline phase in the interior of the diagram. When the alcohol chain length is increased, the continuous solution region is divided into two subregions, an aqueousL 1 and an alcoholicL 2. The lamellar phase occupies the center of the phase diagrams and has the capability to incorporate large amounts of water under one-dimensional swelling. On the alcoholic side of the lamellar phase occur a reversed hexagonal liquid crystalline phase and a cubic liquid crystalline phase in the octanolic system; in the decanolic system the cubic phase is missing, but instead another liquid crystalline phase, presumably with rod-structure, occurs in addition to the reversed hexagonal phase.In a decanolic system where the monovalent bromide ion is replaced by the divalent sulphate ion there are the same solution regionsL 1 andL 2, and phase regions with liquid crystalline normal hexagonal and lamellar structures. The lamellar phase has lost much of its capability of incorporating water. That is in analogy with the conditions in anionic systems where the counterion charge has been increased. There is no reversed hexagonal phase, but on the alcoholic side of the lamellar phase, there is the same foreign liquid crystalline phase with a presumed rod-structure as in the monovalent system.  相似文献   

3.
The polymerisation of a polymerisable fatty acid surfactant (sodium 10-undecenoate) has been studied in both its self-assembled and non self-assembled forms. Polymerisation in non self-assembled solution was achieved to near completion. The polymerisation produces a surface active polymer. The self-assembling behaviour of this pre-polymerised form differs markedly from that observed for the monomeric surfactant [1]. A lamellar phase only is formed in the polymeric phase diagram with no hexagonal or lamellar gel phases being observed. Polymerisation in the different self-assembled forms of sodium 10-undecenoate reached a limit of approximately 30% only, i.e., the surfactant aggregates act to inhibit the polymerisation. The nature of the hydrocarbon chain was found to play a critical role in determining the effect that polymerisation had on the underlying geometry of the surfactant molecules. When the chains are in a fluid-like state (as for the micellar and hexagonal phases) the original monomeric matrix remains largely unchanged. Whereas partial polymerisation of the lamellar gel phase results in a phase transformation.In addition the hydrolysis of the fatty acid soap at low concentrations (close to the critical micelle concentration) has been investigated. Hydrolysis was shown to produce both the parent fatty acid and an acid soap dimer. The presence of these species greatly affects the solution behaviour in this region of the phase diagram shifting the critical micelle concentration to very high concentrations of sodium 10-undecenoate (ca. 0.4 M).  相似文献   

4.
The isothermal ternary phase diagrams for the systems magnesium dodecylsulphate-decanol-water at 40 °C and calcium dodecylsulphate-decanol-water at 50 °C are determined by water deuteron NMR and polarizing microscopic studies. In the magnesium system, three liquid crystalline phases (lamellar and normal and reverse hexagonal) and two isotropic (normal and reverse) solution phases are characterized and their ranges of existence are obtained. The calcium system yields the same liquid crystalline phases, but only the lamellar liquid crystalline phase is investigated in detail. The important observations made are: (i) The lamellar liquid crystalline phase for the magnesium and calcium systems can incorporate, respectively, a maximum of 22.5 and 14.3 mole water per mole surfactant ion against 139 mole water for the corresponding sodium system. (ii) The reverse hexagonal liquid crystalline phase is formed for both the magnesium and calcium systems while no such liquid crystalline phase exists for the corresponding sodium system. (iii) The2H NMR quadrupole splittings obtained in the liquid crystalline phases for C8SO 4 and C12SO 4 surfactant systems with different counterions (Ca2+,Mg2+,Be2+,Na+) reveal that surfactant hydration is almost independent of alkyl chain length and counterions.  相似文献   

5.
Previous studies of the occurrence of acid soaps in systems containing a longchain sodium soap and the corresponding fatty acid, and the study of phase equilibria in the system sodium octanoate — octanoic acid — water, performed by our group at the beginning of the 1960s, show that the isotropic liquidL 2-phase of the last mentioned system in its whole region of existence is situated in that part in which acid soaps occur. This provides an explanation for the fact that theL 2-phase itself contains acid sodium octanoates in all regions. TheL 2-phase has its origin in the water-free melt of fatty acid and neutral soap in which these components react with each other under the formation of an acid soap. When water is added to the system, this water-free acid soap is transformed into different hydrated acid soaps. In a large region of concentration, there is an extremely close relation between theL 2-phase and the liquid-crystalline lamellarD-phase, which itself consists of hydrated acid soaps. At its outermost water-rich tip, theL 2-phase is in equilibrium with theL 1-phase of the system, just above the+LAC, that is, with the most dilute aqueous soap solution in which acid soap still may be formed in aqueous environment. Formation of acid soap is a fundamental requirement for the existence of this isotropic liquidL 2-phase.  相似文献   

6.
Lyotropic liquid crystals formed in a ternary system of 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl), 1-decanol, and water at 25 degrees C are reported. The hexagonal and lamellar phases were characterized by small angle X-ray scattering and polarizing optical microscopy. In the phase diagram, the system shows two isotropic liquid phases, a hexagonal phase connected to the [C16mim]Cl-water axis, and a lamellar phase in the center. The formation of liquid crystalline phases is believed to arise from a hydrogen-bonded network comprised of an imidazolium ring, anion, 1-decanol, and water. In the liquid crystal, the intercalation of 1-decanol between neighboring [C16mim]Cl molecules favors the appearance of lamellar phases. The phase behavior of the present system is discussed in comparison with a similar ternary system of cetyltrimethylammonium bromide (CTAB).  相似文献   

7.
Measurements of water pressure and electrical conductivity have contributed to show that the extended, isotropic liquid L2-phase region in the system sodium octanoate/ octanoic acid/water may be divided into several subregions, inside which the character of the system is different. In the non-aqueous part of the phase and at low contents of water and more than about three moles of octanoic acid per mole of sodium octanoate the character is that of a solution of acid sodium octanoate in octanoic acid. At high water contents the L2-phase has the character of a solution of acid sodium octanoate in water. Intermediately there is a large region where the character of the phase is reminiscent of a hydrated acid sodium octanoate in fluid state. In this region the content of octanoic acid is below three moles per mole of sodium octanoate and the maximal water content is about that bound to the polar groups.In the intermediate region the water vapour pressure is regulated mainly by the extent and type of the bonding of the water to the polar groups, and the electrical conductivity by the migration of free hydrated sodium ions in an environment of hydrated polar groups. In the part of the L2-phase where the character of the phase is that of an aqueous solution the vapour pressure and conductivity are regulated by the concentration of molecularly dispersed acid sodium octanoate and its ions in water.  相似文献   

8.
Phase behavior of ternary systems containing 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium bromide (R12TAB), benzyl alcohol and water have been studied at 25±0.1°C. Ternary phase diagram of the systems shows a clear, isotropic, and low‐viscous region, a L phase, two liquid crystalline phases (lamella and hexagonal liquid crystal), and a coexisted phase of the liquid crystalline and micelles. 2H nuclear magnetic resonance (2H NMR) technology and polarizing‐light microscope were employed to confirm the symmetry structure of the liquid crystals and the boundaries for the different phases. In L phase, three types of different micelle regions (reverse micelles, normal micelles, and bicontinuous structures zones) were confirmed by means of the electric conductivity and the proton nuclear magnetic resonance spectroscopy (1H NMR) measurements. The microcosmic structures of the micelle were investigated, and the solubilizing position of benzyl alcohol were located according to the chemical shift of protons.  相似文献   

9.
Phase diagram of a water/sucrose monododecanoate (SE)/hexanol system was determined at 30°C. Aqueous micellar, reverse micellar, normal hexagonal liquid crystalline, and lamellar liquid crystalline phases appear in the phase diagram. The change in interlayer spacing and interfacial section area of surfactant in the liquid crystalline phases was investigated by small-angle x-ray scattering. Upon addition of water, the section area and the radius of cylindrical aggregates are almost constant in a hexagonal liquid crystal, whereas the distance between each cylinder is separated on the water-SE axis. The interlayer spacing slightly decreases or is almost unchanged on the surfactant-hexanol axis, because alcohol molecules penetrate into the palisade of bilayers. Although the average section area decreases with increasing alcohol content, each section area of SE and alcohol molecules are kept constant. Since the interfacial section area of alcohol is less than the section area of hydrocarbon chain, the phase transition from lamellar liquid crystal to reverse micelle occurs in an alcohol-rich region.  相似文献   

10.
Due to its potential relevance as a fully biocompatible formulation useful in cosmetic, food, and pharmaceutical applications, the glycerol trioleate/sodium oleate/water ternary system was investigated via optical microscopy and NMR methods. The ternary diagram is dominated by monophasic and biphasic regions where a lamellar phase coexists with different isotropic phases. A broad emulsion region, characterized by small oil droplets dispersed within the lamellar phase, extends from the center toward the water corner of the diagram. Information on the inner structure of these emulsion-like samples is supplied by modeling water and oil NMR self-diffusion data. Sizing of oil droplets was provided at different storage times. A highly polydisperse log-normal distribution was observed. The presence of the liquid crystalline phase is called into play for the negligible differences found in the droplets size distribution upon samples aging. Indeed, samples within this region stored at 25 degrees C did not show phase separation after several months from their preparation.  相似文献   

11.
The phase diagram at 298.2 and 281.2 K for the ternary system water-butylammonium decanoate-decane has been determined. An isotropic solution phase extending from the water corner to the decane corner was obtained without any macroscopic phase separation. A large two-phase region extending from the water-decane axis was also observed. In addition to these phases, an anisotropic and optically birefrigent liquid crystalline phase is formed below 290.3 K. Sound velocity, conductivity, and viscosity measurements were used successfully for studies of microstructural transitions in the isotropic solution phase. From these measurements, it was concluded that a transition from normal micelles to reverse micelles takes place while passing through a bicontinuous region.  相似文献   

12.
Phase behavior of mixed sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) aqueous solution was studied. The rheological properties and microstructure were investigated using a rheostat and freeze-fracture technique and are shown to be closely related to the phase behavior. Experimental investigations reveal two symmetrical aqueous two-phase systems (ATPS) in the ternary phase diagram of SDS/CTAB/H2O system. In the surfactant rich phase of ATPS or in the adjacent stoichiometric state of ATPS, the system has high viscosity because of its long range ordered structure. Lamellar phase was found in the high viscosity samples in which the cationic and anionic surfactant are in 1: 3 or 3: 1 stoichiometry. In addition, the viscosity has a tendency to increase when salt was added to the solution. The viscosity increase is due to the salt can screen the repulsion between different charged headgroups and thus reduces the effective size of surfactants and facilitates the spherical or rod likes micelles to be transformed to worm-like micelles which can form hexagonal or liquid crystal phases. Large-size salt ions like sodium sulfate (especially organic salt ions) have more significant effect on the surfactant solution viscosity. The text was submitted by the authors in English.  相似文献   

13.
A partial phase diagram has been determined for the system based on 5‐phenylvalerate, 4‐pentyphenol, and water at 25 °C. The system showed a very rich phase behavior in which many different isotropic solutions and liquid crystals were found. Both normal and reverse self‐assembly structures of the micellar and hexagonal types were noted. In the middle of the phase diagram, a lamellar liquid crystalline phase with a large swelling capacity was observed. When the aromatic alcohol was replaced by a long‐chain alcohol the reverse hexagonal structure disappeared. The effect of temperature and salinity on the phase behavior was also studied. Raising the temperature increased the micellar regions, while the lamellar phase was slightly reduced and the reverse hexagonal phase disappeared. Addition of salt gave the lamellar phase a smaller region of existence and the large extension towards the water apex disappeared. Introduction of an acid to the system resulted in a remarkable change of the phase behavior: both the normal micellar and lamellar regions were significantly reduced, while the reverse micellar region was significantly increased.  相似文献   

14.
The phase behavior of liquid crystalline in the ternary system of dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1pentanol(C5HnOH) / water deuteron(D2O) has been investigated by polarizing optical microscopy, 2H NMR spectroscopy methods. The results indicate that two kinds of liquid crystals (the lamellar, and the hexagonal) exist in the liquid crystalline phase region. In this paper, we also use the polarized Raman spectroscopy method to measure the values of the order/ disorder parameters and the values of the environment polarity parameters for the samples selected from the liquid crystalline phase region, and compare these two parameters of the samples with those of solid state DDAHPS and liquid state pentan-l-ol.  相似文献   

15.
Mixed surfactant systems have the potential to impart controlled combinations of functionality and pore structure to mesoporous metal oxides. Here, we combine a functional glucopyranoside surfactant with a cationic surfactant that readily forms liquid crystalline mesophases. The phase diagram for the ternary system CTAB/H(2)O/n-octyl-beta-D-glucopyranoside (C(8)G(1)) at 50 degrees C is measured using polarized optical microscopy. At this temperature, the binary C(8)G(1)/H(2)O system forms disordered micellar solutions up to 72 wt% C(8)G(1), and there is no hexagonal phase. With the addition of CTAB, we identify a large area of hexagonal phase, as well as cubic, lamellar and solid surfactant phases. The ternary phase diagram is used to predict the synthesis of thick mesoporous silica films via a direct liquid crystal templating technique. By changing the relative concentration of mixed surfactants as well as inorganic precursor species, surfactant/silica mesostructured thick films can be synthesized with variable glucopyranoside content, and with 2D hexagonal, cubic and lamellar structures. The domains over which different mesophases are prepared correspond well with those of the ternary phase diagram if the hydrophilic inorganic species is assumed to act as an equivalent volume of water.  相似文献   

16.
Phase equilibria and critical phenomena in the lithium nitrate-water-acetonitrile ternary system were studied by a visual polythermal method within the range of ?20 to 50°C. In this ternary system, the constituent liquid binary system is characterized by phase separation with an upper critical solution temperature. It was found that the ternary system undergoes phase separation at temperatures below 0.7°C. In the phase diagram within the range of ?1.1 to 0.7°C, a closed phase separation region with two critical points was revealed. The temperature of the formation of the critical tie line of the monotectic state the solid phase of which is the crystalline hydrate LiNO3 · 3H2O was determined (?18.7°C). Depending on the concentration, lithium nitrate has both salting-in and salting-out effect on aqueous acetonitrile mixtures. The plotted isothermal sections of the temperature-concentration prism of the system at fifteen temperatures showed the pattern of the topological transformation of its phase diagram with varying temperature.  相似文献   

17.
Phase behavior containing alkyl ethoxysulfates (AES), ethanol, and H2O over the whole concentration range was explored at 25°C. The system exhibited an isotropic solution phase (L), two different liquid crystalline phases: hexagonal phase (H), lamellar phase (Lα), and a biphasic region appearing with the ethanol concentration increasing. Polarized optical microscopy and small angle x-ray scattering were applied to characterize liquid crystalline phases. Direct two-phase titration and liquid chromatography–mass spectrometry (LC–MS) were employed to analyze the AES activity and homologues composition of the particles appearing in two-phase region.  相似文献   

18.
In this work, the solubilities of the salt minerals and the densities of solution in two ternary systems sodium chloride–zinc chloride–water and magnesium chloride–zinc chloride–water were measured at 373 K using an isothermal solution saturation method. Based on the determined equilibrium solubility data and the corresponding equilibrium solid phase, the phase diagrams and density diagrams of the two systems were plotted. The results show that the two ternary systems are complex and the eutectic points, the univariant solubility curves and the solid crystalline phase regions are shown and discussed. The phase diagram of the ternary system NaCl?ZnCl2?H2O at 373 K is constituted of two eutectic points, three univariant solubility curves and three solid crystalline phase regions corresponding to NaCl, ZnCl2 and 2NaCl · ZnCl2. And the phase diagram of the ternary system MgCl2?ZnCl2?H2O at 373 K includes two eutectic points, three univariant solubility curves and three solid crystalline phase regions corresponding to MgCl2 · 6H2O, MgCl2 · ZnCl2 · 5H2O and ZnCl2. The experimental results were simply discussed.  相似文献   

19.
Analogously to aqueous K-soap/water systems already examined, the glycerol-containing systems KC n /G (KC n ;n=12, 14, 16, 18, 22; G=glycerol) are also able to build up hexagonal, lamellar, optically isotropic, gel-like and crystalline phases. These preliminary phases have been identified by texture observations of contact samples and singular concentrations with a polarizing microscope. The appertaining phase regions have been plotted in the binary phase diagrams.Correspondences and differences between these systems have been elucidared by drawing a comparison. Mosaic texture and oily streaks are typical of the lamellar phase. Spherulites are mainly found in the heterogeneous two-phase region lamellar/isotropic. The textures of the hexagonal phase are of fan-like morphology. The appearance of the gel phase texture resembles globular or curd-like structures.The influences exerted by the increasing chain lengths of the K-soaps (KC n ,n=12–22) on the phase regions in the binary systems (KC n /G) can be described as follows. The concentrations required for forming the hexagonal and the lamellar phase respectively are shifted toward lower K-soap concentrations. The concentration range in which the hexagonal phase is stable is diminished. The temperature range in which the hexagonal phase is stable becomes larger. The upper temperature limit of the lamellar phase region is lowered.Binary aqueous and glycerol-containing K-soap systems have the following common features: The hexagonal phase is built up at low soap concentrations. The lamellar phase is formed at high soap concentrations. The lamellar phase is formed at high soap concentrations. An optically isotropic region is inserved between the lamellar and the hexagonal phase in aqueous and glycerol-containing systems of the types KC14, KC16 and KC18. The temperature of the transition hexagonalisotropic phase (HS) runs through a maximum value. On increasing the chain length the formation of the hexagonal phase is shifted in the direction of lower soap concentrations.Aqueous and glycerol-containing K-soap mixtures differ in the following essential points: The lyotropic mesophases (H, L, I) of aqueous systems are formed at considerably lower soap concentrations than the corresponding phases of glycerol-containing systems. The lamellar phases of aqueous systems reach the regions of very low soap concentrations. The lyotropic mesophases of aqueous systems are built up at temperatures lower than the corresponding ones of glycerol-containing mixtures. In aqueous systems the concentration range of the lamellar phase increases with increasing chain length, in contrast to glycerol-containing systems where it is diminished.  相似文献   

20.
The phase behavior of ternary mixtures of 1-cetyl-3-methylimidazolium bromide (C(16)mim-Br)/p-xylene/water is studied by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and rheology measurements. Two types of lyotropic liquid crystalline phases are formed in the mixtures: hexagonal and lamellar. The structural parameters of the lyotropic liquid crystalline phases are calculated. Greater surfactant content in the sample leads to denser aggregation of the cylindrical units in the hexagonal liquid crystalline phase. The increase in lattice parameter and thickness of the water layer in lamellar phase are attributed to the increase of water content, and the area per surfactant molecule at the hydrophobic/hydrophilic interface for lamellar phase is found to be larger than that for hexagonal phase. The structural parameters of the liquid crystalline phases formed from the cetyltrimethylammonium bromide (CTAB) system are larger than those for the C(16)mim-Br system. The rheological properties of the samples are also found to be related to the structure of the liquid crystalline phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号