首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

2.
Commercially available silica‐based monolithic columns Chromolith RP‐8e, Chromolith RP‐18, and Chromolith HR RP‐18, and polymer‐based monolithic columns ProSwift RP‐1S, ProSwift RP‐2H, and ProSwift RP‐3U varying in pore size and bonded phase have been tested for the fast separation of selected sets of analytes. These mixtures of analytes included small molecules (uracil, caffeine, 1‐phenylethanol, butyl paraben, and anthracene), acylated insulins, and intact proteins (ribonuclease A, cytochrome C, transferrin, apomyoglobin, and thyroglobulin), and covered wide range of chemistries and sizes. Small molecules were well separated with a height equivalent to theoretical plate of 11–26 μm using silica‐based monolithic columns, while organic polymer‐based monoliths excelled in the fast sub 1 min baseline separations of large molecules. A peak capacity of 37 was found for separation of acylated insulins on Chromolith columns using a 3 min gradient at a flow rate of 3 ml/min. Poor recovery of proteins from Chromolith columns and significant peak tailing of small molecules using ProSwift columns were the major obstacles in using monolithic columns in those applications.  相似文献   

3.
Yan L  Zhang Q  Zhang W  Feng Y  Zhang L  Li T  Zhang Y 《Electrophoresis》2005,26(15):2935-2941
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.  相似文献   

4.

SPE and TLC have been used for qualitative and quantitative analysis of salidroside, rosavin, rosarin, and rosin in commercially available dry extracts from Rhodiola rosea roots. The best separation of all the compounds was achieved on silica gel TLC plates with ethyl acetate—methanol—water, 77 + 13 + 10 (v/v), as mobile phase. UV detection was performed at λ = 215 nm for salidroside and at λ= 245 nm for the rosavins (rosavin, rosarin, and rosin). Detection limits for salidroside and the rosavins were 90 ng and 60 ng per spot, respectively. Results from quantitative analysis confirmed the manufacturer’s declaration of the amounts of salidroside and the rosavins in the extracts.

  相似文献   

5.
A new rapid, sensitive and validated HPLC method has been developed for the determination of methylxanthines and their metabolites in asthmatic patients. The method was initiated by using spiked urine samples on a silica monolithic column as a novel packing material. The mobile phase consisted of 10 mM potassium dihydrogen phosphate buffer/methanol (87.5:12.5 v/v), at a flow rate 1 mL/min. Detection was set at 274 nm. The LOQ for all the compounds ranged from 14 to 41 ng/mL. Excellent linearity was achieved over the studied range of concentration with correlation coefficients 0.9991–0.9998 (n = 6). The developed method was validated by precision and accuracy with RSD <2.55%. On extraction of the drugs and metabolites from the urine samples high recoveries were achieved ranging from 82.06 to 98.34% w/w on RP18 cartridges and methanol/chloroform (20:80 v/v) as the extraction solvent. This method has advantages over other methods using conventional C18 packings.  相似文献   

6.
Hu J  Xie C  Tian R  He Z  Zou H 《Electrophoresis》2006,27(21):4266-4272
A hybrid silica monolithic stationary phase for RP CEC was prepared by in situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol-gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups.  相似文献   

7.
LC method with the newly introduced second‐generation monolithic silica RP‐18e column has been developed for the separation of FeIII(salophene) and four methoxy‐substituted FeIII(salophene) complexes. The method has been validated for the quantitation of FeIII(4‐OMe‐salophene), a highly active anticancer substance in vitro, bound to serum albumin. Our routinely used high‐resolution continuum‐source atomic absorption spectroscopy method based on the determination of the central iron atom was unsuitable in this case because serum originally contains significant amounts of iron as revealed by a blank sample of serum albumin. The developed LC method depends on detecting the whole complex rather than the bound iron. Two morphologically different first‐ and second‐generation HPLC monolithic columns have been compared for this purpose. The newly introduced second‐generation monolithic silica column Chromolith® HighResolution RP‐18e column (100 × 4.6 mm, Merck) separated the mixture successful within 13 min. A mobile phase consisting of 25 mM phosphate buffer pH 3/methanol (60:40, v/v) was used at a flow rate of 1 mL/min. The dynamic linear working range of the calibration curve for FeIII(4‐OMe‐salophene) was found to be between 1 and 200 μg/mL. Detection and quantitation limits were 0.3 and 1 μg/mL, respectively.  相似文献   

8.
A new 2,3-methylated 3*-monoacetylated 6-O-tert-butyldimethylsilylated beta-CD derivative was synthesized and chemically bonded onto aminopropyl derivatized monolithic silica HPLC columns. In this CD derivative, only one of seven methyl groups in 3-position was substituted by an acetyl group. Its applicability as a chiral stationary phase for HPLC was tested and compared with exclusively 2,3-methylated 6-O-tert-butyldimethylsilylated beta-CD immobilized onto aminopropyl-modified monoliths. Thirty-two chiral compounds from different chemical classes and different functionalities were tested under RP conditions. Fourteen compounds were resolved into their enantiomers by methylated 6-O-tert-butyldimethylsilylated beta-CD. By use of methylated/acetylated 6-O-tert-butyldimethylsilylated beta-CD as the chiral stationary phase 7 analytes were successfully stereodifferentiated.  相似文献   

9.
Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.  相似文献   

10.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

11.
Column chromatography over silica gel and polyamide was used to isolate 14 phenolic substances from bark of sharp-leaved willow (Salix acutifolia Willd.). These included naringenin, prunin, (-)-salipurposide, (+)-catechin, isosalipurposide, 6-coumarylisosalipurposide, isosalipurpol (flavonoids), triandrin, syringin (phenylpropanoids), and salicyl alcohol (saligenin) and its derivatives acylsaligenin, salicin, salicortin, and tremulacin. Nine of these were isolated for the first time from this species. They were identified using UV, IR, NMR, and mass spectra, chemical transformations, and comparison with authentic samples.  相似文献   

12.
This article describes the synthesis, chromatographic characterization, and performance evaluation of analytical (100 x 4.6 mm id) and semipreparative (100 x 10 mm id) monolithic silica columns with mixed-mode RP/weak anion-exchange (RP/WAX) surface modification. The monolithic RP/WAX columns were obtained by immobilization of N-(10-undecenoyl)-3-aminoquinuclidine onto thiol-modified monolithic silica columns (Chromolith) by a radical addition reaction. Their chromatographic characterization by Engelhardt and Tanaka tests revealed slightly lower hydrophobic selectivities than C-8 phases, as well as higher polarity and also improved shape selectivity than RP-18e silica rods. The surface modification enabled separation by both RP and anion-exchange chromatography principles, and thus showed complementary selectivities to the RP-18e monoliths. The mixed-mode monoliths have been tested for the separation of peptides and turned out to be particularly useful for hydrophilic acidic peptides, which are usually insufficiently retained on RP-18e monolithic columns. Compared to a corresponding particulate RP/WAX column (5 microm, 10 nm pore diameter), the analytical RP/WAX monolith caused lower system pressure drops and showed, as expected, higher efficiency (e.g. by a factor of about 2.5 lower C-term for a tetrapeptide). The upscaling from the analytical to semipreparative column dimension was also successful.  相似文献   

13.
We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3–5 μm C18 and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate–ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2–2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns.  相似文献   

14.
A silica-based monolithic stationary phase with mixed-mode of reversed phase (RP) and weak anion-exchange (WAX) for capillary electrochromatography (CEC) has been prepared. The mixed-mode monolithic silica column was prepared using the sol–gel technique and followed by a post-modification with hexadecyltrimethoxysilane (HDTMS) and aminopropyltrimethoxysilane (APTMS). The amino groups on the surface of the stationary phase were used to generate a substantial anodic EOF as well as to provide electrostatic interaction sites for charged compounds at low pH. A cathodic EOF was observed at pH above 7.3 due to the full ionization of residual silanol groups and the suppression in the ionization of amino groups. A variety of analytes were used to evaluate the electrochromatographic characterization and column performance. The monolithic stationary phase exhibited RP chromatographic behavior toward neutral solutes. The model anionic solutes were separated by the mixed-mode mechanism, which comprised RP interaction, WAX, and electrophoresis. Symmetrical peaks can be obtained for basic solutes because positively charged amino groups can effectively minimize the adsorption of positively charged analytes to the stationary phase.  相似文献   

15.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

16.
A rapid, sensitive and reproducible HPLC method was developed and validated for the analysis of haloperidol and its three main metabolites in human plasma. The analysis was carried out on a monolithic silica column (Chromolith Performance RP-18e, 100 x 4.6 mm). The mobile phase consisted of sodium phosphate (0.1 m, pH 3.5)-acetonitrile (80:20, v/v) at a flow rate of 2.0 mL/min. UV detection at 230 nm was used, with the detection limits of these compounds ranging from 2 to 5 ng. The separation factors of all studied compounds were in the range 2.30-16.32, while the resolution factors were from 1.00 to 5.37.  相似文献   

17.
The following particulate and monolithic silica columns were implemented in a fully automated and flexible multidimensional LC/MS system with integrated sample clean-up, to perform the analysis of endogeneous peptides from filtered urine and plasma samples: restricted access sulphonic acid strong cation-exchanger (RAM-SCX) for sample clean-up, RP 18 Chromolith guard columns as trap columns and 100 microm I.D. monolithic RP 18 fused silica capillary columns as last LC dimension. The results show sufficient overall system reproducibility and repeatability. Implementation of monolithic silica columns added an additional flexibility with respect to flow rate variation and adjustment due to the low column back pressures. Also, monolithic columns showed a lower clogging rate in long-term usage for biological samples as compared to particulate columns. The applied system set-up was tested to be useful for the routine peptide screening in search of disease biomarkers.  相似文献   

18.
Summary Ten pesticides have been completely separated by two-dimensional (2D) development on TLC plates coated with coupled layers of octadecyl silica (reversed-phase, RP) and plain silica (normal-phase, NP). The binary mobile phases, aqueous-organic for RP chromatography and nonaqueous for NP chromatography, were chosen from plots ofR F against mobile-phase composition and graphicalR F(RP)-R F(NP) correlations. The different selectivity of the RP and NP systems enabled dispersion of spots over the plate area and good separation.  相似文献   

19.
Wang J  Lü H  Lin X  Xie Z 《Electrophoresis》2008,29(4):928-935
A monolithic capillary column with double mixed-modes of hydrophilic interaction/cation-exchange and RP/cation-exchange stationary phase was prepared by in situ thermal polymerization and then hydrolyzed with hydrochloric acid. The polymerization solution containing glycidyl methacrylate (GMA), 3-sulfopropyl methacrylate potassium salt (SPMA), and ethylene dimethacrylate (EDMA) in a binary porogenic solvent consisting of dimethylformamide (DMF) and 1,4-butanediol was polymerized in a fused-silica capillary pretreated with 3-(trimetoxysilyl) propyl methacrylate. The epoxy groups on the surface were hydrolyzed to diol groups with hydrochloric acid to enhance the polarity of the stationary phase. By simply altering the ACN content in the mobile phase, two mixed-mode mechanisms could be achieved on the same monolithic column in different mobile phase condition. Hydrophilic interaction (or hydrophilic interaction/cation-exchange) was observed at high ACN content, as well as RP (or RP/cation-exchange) was observed at low ACN content. The monolithic column provided good selectivity and high efficiency for separation of neutral polar analytes and basic compounds. Phenols, anilines, alkaloids, nucleic acid bases, and narcotic pharmaceuticals have been successfully separated. Effects of salt concentration and ACN content on the separation have also been investigated. High column efficiencies of up to 352 000 plates/meter were obtained by the separation of narcotic pharmaceuticals.  相似文献   

20.
The separation of structurally related angiotensin-converting enzyme (ACE) inhibitors lisinopril, cilazapril, ramipril and quinapril and their corresponding active diacid forms (prilates) by conventional TLC silica gel 60 plates was contrasted with that afforded by monolithic ultra-thin-layer chromatographic (UTLC) plates. For the use of UTLC plates technical modifications of the commercially available equipments for the sample application, development and detection were made. Plates were developed in modified horizontal developing chamber using ethyl acetate-acetone-acetic acid-water (4:1:0.25:0.5, v/v). Detection of the separated compounds was performed densitometrically in absorption/reflectance mode at 220 nm and after exposure to iodine also by image analysis. The obtained results showed that monolithic layer is more efficient for the separation of structurally similar polar compounds, such as prilates than conventional silica layers. Identification of the compounds was confirmed by ESI-MS after their on-line extraction from the UTLC and TLC plates by means of Camag TLC-MS interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号