首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Marlin-1 is a microtubule binding protein that associates specifically with the GABAB1 subunit in neurons and with members of the Janus kinase family in lymphoid cells. In addition, it binds the molecular motor kinesin-I and nucleic acids, preferentially single stranded RNA. Marlin-1 is expressed mainly in the central nervous system but little is known regarding its cellular and subcellular distribution in the brain.  相似文献   

2.

Background  

Metabotropic glutamate receptors (mGluRs) regulate neuronal excitability and synaptic strength. The group I mGluRs, mGluR1 and 5, are widespread in the brain and localize to post-synaptic sites. The Homer protein family regulates group I mGluR function and distribution. Constitutively expressed 'long' Homer proteins (Homer 1b, 1c, 2 and 3) induce dendritic localization of group I mGluRs and receptor clustering, either internally or on the plasma membrane. Short Homer proteins (Homer 1a, Ania-3) exhibit regulated expression and act as dominant negatives, producing effects on mGluR distribution and function that oppose those of the long Homer proteins.  相似文献   

3.
4.

Background  

Disabled-1 (Dab1) is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn.  相似文献   

5.

Background  

Permeability of the blood-brain barrier is one of the factors determining the bioavailability of therapeutic drugs and resistance to chemically different antiepileptic drugs is a consequence of decreased intracerebral accumulation. The ABC transporters, particularly P-glycoprotein, are known to play a role in antiepileptic drug extrusion, but are not by themselves sufficient to fully explain the phenomenon of drug-resistant epilepsy. Proteomic analyses of membrane protein differentially expressed in epileptic foci brain tissue revealed the frequently increased expression of RLIP76/RALBP1, a recently described non-ABC multi-specific transporter. Because of a significant overlap in substrates between P-glycoprotein and RLIP76, present studies were carried out to determine the potential role of RLIP76 in AED transport in the brain.  相似文献   

6.
7.

Background  

MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126.  相似文献   

8.

Background  

Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP), HFE, neogenin (NEO1), transferrin receptor 1 (TFRC), transferrin receptor 2 (TFR2), and hemojuvelin (HFE2) in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines.  相似文献   

9.

Background

Alpha-Synuclein (α-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the α-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of α-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood.

Results

In the present study, we analysed the ability of cytosolic factors to regulate α-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant α-syn. To characterize cytosolic factor(s) that modulate α-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate α-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T α-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance α-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P α-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol.

Conclusion

These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant α-syn membrane binding, and could represent potential targets to influence α-syn solubility in brain.  相似文献   

10.

Background  

Oxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches.  相似文献   

11.

Background  

Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging.  相似文献   

12.

Background  

The importance of L1 expression in the matured brain is suggested by physiological and behavioral studies showing that L1 is related to hippocampal plasticity and fear conditioning. The distribution of L1 in mouse brain might provide a basis for understanding its role in the brain.  相似文献   

13.

Background  

The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease) is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1), and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis.  相似文献   

14.

Background  

Guanine nucleotide exchange factors (GEFs) and their target Rho GTPases regulate cytoskeletal changes and membrane trafficking. Dynamin, a large force-generating GTPase, plays an essential role in membrane tubulation and fission in cells. Kalirin12, a neuronal RhoGEF, is found in growth cones early in development and in dendritic spines later in development.  相似文献   

15.

Background  

Neurite growth can be elicited by growth factors and interactions with extracellular matrix molecules like laminin. Among the targets of the signalling pathways activated by these stimuli are cytoskeletal elements, such as actin, tubulin and neurofilaments. The cytoskeleton can also be modulated by other proteins, such as the small heat shock protein Hsp27. Hsp27 interacts with actin and tubulin in non-neuronal cells and while it has been suggested to play a role in the response of some neurons to injury, there have been no direct studies of its contribution to axonal regeneration.  相似文献   

16.

Background  

Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity.  相似文献   

17.
18.

Background  

S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity.  相似文献   

19.

Background  

The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-α-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained on either normal or restricted protein diet may be of importance for understanding the neurotoxicity properties of aluminium.  相似文献   

20.

Backgroud  

Cerebral vasospasm (CVS) and early brain injury remain major causes of morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH). Hydroxymethylglutaryl coenzyme A reductase inhibitors, also known as statins, has the neuroprotective effects and ameliorating CVS after SAH. This study was designed to explore apoptosis inhibiting effects of atorvastatin and its potential apoptotic signal pathway after SAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号