首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广义部分线性模型是广义线性模型和部分线性模型的推广,是一种应用广泛的半参数模型.本文讨论的是该模型在线性协变量和响应变量均存在非随机缺失数据情形下参数的Bayes估计和基于Bayes因子的模型选择问题,在分析过程中,采用了惩罚样条来估计模型中的非参数成分,并建立了Bayes层次模型;为了解决Gibbs抽样过程中因参数高度相关带来的混合性差以及因维数增加导致出现不稳定性的问题,引入了潜变量做为添加数据并应用了压缩Gibbs抽样方法,改进了收敛性;同时,为了避免计算多重积分,利用了M-H算法估计边缘密度函数后计算Bayes因子,为模型的选择比较提供了一种准则.最后,通过模拟和实例验证了所给方法的有效性.  相似文献   

2.
Variable and model selection are of major concern in many statistical applications, especially in high-dimensional regression models. Boosting is a convenient statistical method that combines model fitting with intrinsic model selection. We investigate the impact of base-learner specification on the performance of boosting as a model selection procedure. We show that variable selection may be biased if the covariates are of different nature. Important examples are models combining continuous and categorical covariates, especially if the number of categories is large. In this case, least squares base-learners offer increased flexibility for the categorical covariate and lead to a preference even if the categorical covariate is noninformative. Similar difficulties arise when comparing linear and nonlinear base-learners for a continuous covariate. The additional flexibility in the nonlinear base-learner again yields a preference of the more complex modeling alternative. We investigate these problems from a theoretical perspective and suggest a framework for bias correction based on a general class of penalized least squares base-learners. Making all base-learners comparable in terms of their degrees of freedom strongly reduces the selection bias observed in naive boosting specifications. The importance of unbiased model selection is demonstrated in simulations. Supplemental materials including an application to forest health models, additional simulation results, additional theorems, and proofs for the theorems are available online.  相似文献   

3.
Summary The purpose of the present paper is to propose an analytical method for ordered categorical responses obtained from a repeated measurement/longitudinal experiment. The ordered categorical scale is assumed to be a manifestation of a latent quantitative variable. A linear model is assumed for location parameters of the underlying distributions. Weighted least square method is applied to parameter estimation and subsequent analysis. Two data sets are analyzed to show several aspects of analysis by the proposed model and to discuss comparative characteristics of analysis compared with earlier analysis. A mention is made for a computer software program for the proposed model.  相似文献   

4.
半参数再生散度模型是再生散度模型和半参数回归模型的推广,包括了半参数广义线性模型和广义部分线性模型等特殊类型.讨论的是该模型在响应变量和协变量均存在非随机缺失数据情形下参数的Bayes估计和基于Bayes因子的模型选择问题.在分析中,采用了惩罚样条来估计模型中的非参数成分,并建立了Bayes层次模型;为了解决Gibbs抽样过程中因参数高度相关带来的混合性差以及因维数增加导致出现不稳定性的问题,引入了潜变量做为添加数据并应用了压缩Gibbs抽样方法,改进了收敛性;同时,为了避免计算多重积分,利用了M-H算法估计边缘密度函数后计算Bayes因子,为模型的选择比较提供了一种准则.最后,通过模拟和实例验证了所给方法的有效性.  相似文献   

5.
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects that enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework enables highly flexible inference for ordinal regression relationships, avoiding assumptions of linearity or additivity in the covariate effects. In standard parametric ordinal regression models, computational challenges arise from identifiability constraints and estimation of parameters requiring nonstandard inferential techniques. A key feature of the nonparametric model is that it achieves inferential flexibility, while avoiding these difficulties. In particular, we establish full support of the nonparametric mixture model under fixed cut-off points that relate through discretization the latent continuous responses with the ordinal responses. The practical utility of the modeling approach is illustrated through application to two datasets from econometrics, an example involving regression relationships for ozone concentration, and a multirater agreement problem. Supplementary materials with technical details on theoretical results and on computation are available online.  相似文献   

6.
在一般因子分析模型的基础上,假设连续的潜在向量(公共因子)与另一观察随机向量有关,并假定是一个多元线性回归模型,对由此扩展的因子分析模型进行分析.主要通过EM算法给出模型中参数的估计.文中给出了它的详细推导过程.  相似文献   

7.
A mixture approach to clustering is an important technique in cluster analysis. A mixture of multivariate multinomial distributions is usually used to analyze categorical data with latent class model. The parameter estimation is an important step for a mixture distribution. Described here are four approaches to estimating the parameters of a mixture of multivariate multinomial distributions. The first approach is an extended maximum likelihood (ML) method. The second approach is based on the well-known expectation maximization (EM) algorithm. The third approach is the classification maximum likelihood (CML) algorithm. In this paper, we propose a new approach using the so-called fuzzy class model and then create the fuzzy classification maximum likelihood (FCML) approach for categorical data. The accuracy, robustness and effectiveness of these four types of algorithms for estimating the parameters of multivariate binomial mixtures are compared using real empirical data and samples drawn from the multivariate binomial mixtures of two classes. The results show that the proposed FCML algorithm presents better accuracy, robustness and effectiveness. Overall, the FCML algorithm has the superiority over the ML, EM and CML algorithms. Thus, we recommend FCML as another good tool for estimating the parameters of mixture multivariate multinomial models.  相似文献   

8.
Motivated by the psychological factor of time-varying risk-return relationship, this article studies a linear varying coefficient ARCH-M model with a latent variable. Due to the unobservable property of the latent variable, a corrected likelihood method is employed for parametric estimation. Estimators are proved to be consistent and asymptotically normal under certain regularity conditions. A simple test statistic is also proposed for testing latent variable effect. Simulation results confirm that the proposed estimators and test perform well. The model is further applied to examine whether the risk-return relationship depends on investor’s sentiment in American Market and some explainable results are obtained.  相似文献   

9.
A model based clustering procedure for data of mixed type, clustMD, is developed using a latent variable model. It is proposed that a latent variable, following a mixture of Gaussian distributions, generates the observed data of mixed type. The observed data may be any combination of continuous, binary, ordinal or nominal variables. clustMD employs a parsimonious covariance structure for the latent variables, leading to a suite of six clustering models that vary in complexity and provide an elegant and unified approach to clustering mixed data. An expectation maximisation (EM) algorithm is used to estimate clustMD; in the presence of nominal data a Monte Carlo EM algorithm is required. The clustMD model is illustrated by clustering simulated mixed type data and prostate cancer patients, on whom mixed data have been recorded.  相似文献   

10.
Latent variable models for ordinal data represent a useful tool in different fields of research in which the constructs of interest are not directly observable so that one or more latent variables are required to reduce the complexity of the data. In these cases problems related to the integration of the likelihood function of the model can arise. Indeed analytical solutions do not exist and in presence of several latent variables the most used classical numerical approximation, the Gauss Hermite quadrature, cannot be applied since it requires several quadrature points per dimension in order to obtain quite accurate estimates and hence the computational effort becomes not feasible. Alternative solutions have been proposed in the literature, like the Laplace approximation and the adaptive quadrature. Different studies demonstrated the superiority of the latter method particularly in presence of categorical data. In this work we present a simulation study for evaluating the performance of the adaptive quadrature approximation for a general class of latent variable models for ordinal data under different conditions of study. A real data example is also illustrated.  相似文献   

11.
In multivariate categorical data, models based on conditional independence assumptions, such as latent class models, offer efficient estimation of complex dependencies. However, Bayesian versions of latent structure models for categorical data typically do not appropriately handle impossible combinations of variables, also known as structural zeros. Allowing nonzero probability for impossible combinations results in inaccurate estimates of joint and conditional probabilities, even for feasible combinations. We present an approach for estimating posterior distributions in Bayesian latent structure models with potentially many structural zeros. The basic idea is to treat the observed data as a truncated sample from an augmented dataset, thereby allowing us to exploit the conditional independence assumptions for computational expediency. As part of the approach, we develop an algorithm for collapsing a large set of structural zero combinations into a much smaller set of disjoint marginal conditions, which speeds up computation. We apply the approach to sample from a semiparametric version of the latent class model with structural zeros in the context of a key issue faced by national statistical agencies seeking to disseminate confidential data to the public: estimating the number of records in a sample that are unique in the population on a set of publicly available categorical variables. The latent class model offers remarkably accurate estimates of population uniqueness, even in the presence of a large number of structural zeros.  相似文献   

12.
A data analysis method is proposed to derive a latent structure matrix from a sample covariance matrix. The matrix can be used to explore the linear latent effect between two sets of observed variables. Procedures with which to estimate a set of dependent variables from a set of explanatory variables by using latent structure matrix are also proposed. The proposed method can assist the researchers in improving the effectiveness of the SEM models by exploring the latent structure between two sets of variables. In addition, a structure residual matrix can also be derived as a by-product of the proposed method, with which researchers can conduct experimental procedures for variables combinations and selections to build various models for hypotheses testing. These capabilities of data analysis method can improve the effectiveness of traditional SEM methods in data property characterization and models hypotheses testing. Case studies are provided to demonstrate the procedure of deriving latent structure matrix step by step, and the latent structure estimation results are quite close to the results of PLS regression. A structure coefficient index is suggested to explore the relationships among various combinations of variables and their effects on the variance of the latent structure.  相似文献   

13.
An existing micro–macro method for a single individual-level variable is extended to the multivariate situation by presenting two multilevel latent class models in which multiple discrete individual-level variables are used to explain a group-level outcome. As in the univariate case, the individual-level data are summarized at the group-level by constructing a discrete latent variable at the group level and this group-level latent variable is used as a predictor for the group-level outcome. In the first extension, that is referred to as the Direct model, the multiple individual-level variables are directly used as indicators for the group-level latent variable. In the second extension, referred to as the Indirect model, the multiple individual-level variables are used to construct an individual-level latent variable that is used as an indicator for the group-level latent variable. This implies that the individual-level variables are used indirectly at the group-level. The within- and between components of the (co)varn the individual-level variables are independent in the Direct model, but dependent in the Indirect model. Both models are discussed and illustrated with an empirical data example.  相似文献   

14.
Recurrent event data frequently occur in longitudinal studies, and it is often of interest to estimate the effects of covariates on the recurrent event rate. This paper considers a class of semiparametric transformation rate models for recurrent event data, which uses an additive Aalen model as its covariate dependent baseline. The new models are flexible in that they allow for both additive and multiplicative covariate effects, and some covariate effects are allowed to be nonparametric and time-varying. An estimating procedure is proposed for parameter estimation, and the resulting estimators are shown to be consistent and asymptotically normal. Simulation studies and a real data analysis demonstrate that the proposed method performs well and is appropriate for practical use.  相似文献   

15.
We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by reporting a weighted average of the responses of clusters of earlier patients. The weights should be determined by the similarity of the new patient’s covariate with the covariates of patients in each cluster. We achieve the desired inference by defining a random partition model that includes a regression on covariates. Patients with similar covariates are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction.

We build on product partition models (PPM). We define an extension of the PPM to include a regression on covariates by including in the cohesion function a new factor that increases the probability of experimental units with similar covariates to be included in the same cluster. We discuss implementations suitable for any combination of continuous, categorical, count, and ordinal covariates.

An implementation of the proposed model as R-package is available for download.  相似文献   

16.
Cure rate models offer a convenient way to model time-to-event data by allowing a proportion of individuals in the population to be completely cured so that they never face the event of interest (say, death). The most studied cure rate models can be defined through a competing cause scenario in which the random variables corresponding to the time-to-event for each competing causes are conditionally independent and identically distributed while the actual number of competing causes is a latent discrete random variable. The main interest is then in the estimation of the cured proportion as well as in developing inference about failure times of the susceptibles. The existing literature consists of parametric and non/semi-parametric approaches, while the expectation maximization (EM) algorithm offers an efficient tool for the estimation of the model parameters due to the presence of right censoring in the data. In this paper, we study the cases wherein the number of competing causes is either a binary or Poisson random variable and a piecewise linear function is used for modeling the hazard function of the time-to-event. Exact likelihood inference is then developed based on the EM algorithm and the inverse of the observed information matrix is used for developing asymptotic confidence intervals. The Monte Carlo simulation study demonstrates the accuracy of the proposed non-parametric approach compared to the results attained from the true correct parametric model. The proposed model and the inferential method is finally illustrated with a data set on cutaneous melanoma.  相似文献   

17.
In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.  相似文献   

18.
During the recent past, there has been a renewed interest in Markov chain for its attractive properties for analyzing real life data emerging from time series or longitudinal data in various fields. The models were proposed for fitting first or higher order Markov chains. However, there is a serious lack of realistic methods for linking covariate dependence with transition probabilities in order to analyze the factors associated with such transitions especially for higher order Markov chains. L.R. Muenz and L.V. Rubinstein [Markov models for covariate dependence of binary sequences, Biometrics 41 (1985) 91–101] employed logistic regression models to analyze the transition probabilities for a first order Markov model. The methodology is still far from generalization in terms of formulating a model for higher order Markov chains. In this study, it is aimed to provide a comprehensive covariate-dependent Markov model for higher order. The proposed model generalizes the estimation procedure for Markov models for any order. The proposed models and inference procedures are simple and the covariate dependence of the transition probabilities of any order can be examined without making the underlying model complex. An example from rainfall data is illustrated in this paper that shows the utility of the proposed model for analyzing complex real life problems. The application of the proposed method indicates that the higher order covariate dependent Markov models can be conveniently employed in a very useful manner and the results can provide in-depth insights to both the researchers and policymakers to resolve complex problems of underlying factors attributing to different types of transitions, reverse transitions and repeated transitions. The estimation and test procedures can be employed for any order of Markov model without making the theory and interpretation difficult for the common users.  相似文献   

19.
The predominant way of modelling mortality rates is the Lee–Carter model and its many extensions. The Lee–Carter model and its many extensions use a latent process to forecast. These models are estimated using a two-step procedure that causes an inconsistent view on the latent variable. This paper considers identifiability issues of these models from a perspective that acknowledges the latent variable as a stochastic process from the beginning. We call this perspective the plug-in age–period or plug-in age–period–cohort model. Defining a parameter vector that includes the underlying parameters of this process rather than its realizations, we investigate whether the expected values and covariances of the plug-in Lee–Carter models are identifiable. It will be seen, for example, that even if in both steps of the estimation procedure we have identifiability in a certain sense it does not necessarily carry over to the plug-in models.  相似文献   

20.
Motivated by genetic association studies of pleiotropy, we propose a Bayesian latent variable approach to jointly study multiple outcomes. The models studied here can incorporate both continuous and binary responses, and can account for serial and cluster correlations. We consider Bayesian estimation for the model parameters, and we develop a novel MCMC algorithm that builds upon hierarchical centering and parameter expansion techniques to efficiently sample from the posterior distribution. We evaluate the proposed method via extensive simulations and demonstrate its utility with an application to an association study of various complication outcomes related to Type 1 diabetes. This article has supplementary material online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号