首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A quartz crystal microbalance with dissipation (QCM-D) and an optical reflectometer (OR) have been used to investigate the adsorption behavior of Laponite and Ludox silica nanoparticles at the solid-liquid interface. The adsorption of both Laponite and Ludox silica onto poly(diallyldimethylammonium chloride) (PDADMAC)-coated surfaces over the first few seconds were studied by OR. Both types of nanoparticles adsorbed rapidly and obtained a stable adsorbed amount after only a few minutes. The rate of adsorption for both nanoparticle types was concentration dependent. The maximum adsorption rate of Ludox nanoparticles was found to be approximately five times faster than that for Laponite nanoparticles. The QCM data for the Laponite remained stable after the initial adsorption period at each concentration tested. The observed plateau values for the frequency shifts increased with increasing Laponite particle concentration. The QCM data for the Ludox nanoparticles had a more complex long-time behavior. In particular, the dissipation data at 3 ppm and 10 ppm Ludox increased slowly with time, never obtaining a stable value within the duration of the experiment. We postulate here that this is caused by slow structural rearrangements of the particles and the PDADMAC within the surface adsorbed layer. Furthermore, the QCM dissipation values were significantly smaller for Laponite when compared with those for Ludox for all nanoparticle concentrations, suggesting that the Laponite adsorbed layer is more compact and more rigidly bound than the Ludox adsorbed layer.  相似文献   

2.
The adsorption of myoglobin (Mb) onto phosphate grafted-zirconia (ZrO2-P) nanoparticles was studied in terms of conformational studies and thermal stability, determined by circular dichroism (CD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). The changes in protein structure have been correlated with the catalytic activity of free and adsorbed Mb. CD and DSC studies indicate marked rearrangements in Mb structure upon adsorption onto phosphate-grafted zirconia nanoparticles. These structural rearrangements of Mb could be responsible for the loss of catalytic activity observed for the adsorbed Mb. In particular, the conformational changes due to the adsorption process induced a reduction of kcat and KM. AFM measurements indicate that the interaction with the grafted-zirconia nanoparticles also affects the morphology of the bound protein, inducing the nucleation of prefibrillar-like aggregates.  相似文献   

3.
This work deals with a construction of an implicit solvent model which can be used in molecular dynamics simulations of systems comprising colloid nanoparticles and carbon nanotubes. Such systems, due to finite sizes of both components, cannot be accurately approximated by a smaller slab geometry and thus represent a particularly difficult case in terms of computer simulations. Adsorption of large colloid nanoparticles on the surfaces of carbon nanotubes were studied and we determined the adsorption energy profiles of the nanoparticles on the carbon nanotubes surfaces. We also determined the adsorption isotherms which help to understand a preferred location of the nanoparticles on the nanotubes surfaces.  相似文献   

4.
The adsorption of polyelectrolyte (PE) multilayers and complexes, obtained from both high- and low-charge polyelectrolytes, was studied on silica and on cellulose model surfaces by quartz crystal microbalance with dissipation (QCM-D). The film properties acquired with the different strategies were compared. When polyelectrolytes were added on an oppositely charged surface in sequence to form multilayers both the change in frequency and dissipation increased. The changes in frequency and dissipation were clearly higher if low-charge PEs were used in the multilayer formation. The substrate, silica or cellulose, did not affect the adsorption behaviour of low-charge PEs and only minor differences were seen in the adsorbed amounts and changes in dissipation of high-charge PEs between SiO2 and cellulose. The complexes formed by low-charge PEs had higher changes in frequency and dissipation at low ionic strength on both surfaces, while the complexes formed from high-charge polyelectrolytes adsorbed more at high salt concentration. The complexes of low-charge polyelectrolytes adsorbed more on silica, while the complexes formed by high-charge PEs formed thicker layers on cellulose. The charge ratio had a significant effect on the adsorption and the highest changes in frequency and dissipation were obtained in the anionic/cationic charge ratio of 0.5–0.6. Generally, the multilayers and complexes formed by low-charge polyacrylamides adsorbed highly and formed rather thick layers on both surfaces, unlike the high-charge PEs which formed thin layers using either one of the addition techniques.  相似文献   

5.
Dynamic Monte Carlo simulations of short linear HP-type copolymers exhibiting proteinlike characteristics are used to investigate both chain dynamics and changes in chain conformational entropy and their contributions to the energetics of adsorption onto a solid-liquid interface. The dMC results show that the conformations and energies of adsorbed chains are highly degenerate. The ensemble-averaged energy of the adsorbed state is dependent on temperature, chain sequence, native-state stability, and sorbent surface geometry and hydrophobicity. Mesoscopic thermodynamic analyses reveal that, although increased chain conformational entropy contributes to the driving force for adsorption in certain cases, many conditions exist where the change in conformational entropy is either negligible or unfavorable due to constraints imposed by the need to form a large and specific number of favorable intra- and intermolecular contacts and by the impenetrable nature of the sorbent surface. Step-number-averaged energy trajectories, based on sampling of a large number of energy trajectories and thus conformational states at each step number, suggest that the search for a global energy minimum is gradual, so that adsorption is first reversible but becomes apparently irreversible with longer exposure to the sorbent. These results appear to be connected to the conformational adaptability of the chain both on the surface and in solution, and an adsorption model taking chain conformational dynamics into account is proposed.  相似文献   

6.
The adsorption of extracted and purified samples of asphaltenes and resins onto gold surfaces has been studied as a function of bulk concentration using a quartz crystal microbalance with dissipation measurements (QCM-D). With this device, which works equally well in transparent, opaque, and nontransparent samples, the adsorbed amount is measured through a change in resonant frequency of the quartz oscillator. The measured change in dissipation reports on changes in layer viscoelasticity and slip of the solvent at the surface. The results show that the adsorbed amount for resins from heptane corresponds to a rigidly attached monolayer. The adsorbed amount decreases with increasing amount of toluene in the solvent and is virtually zero in pure toluene. Asphaltenes, on the other hand, adsorb in large quantities and the mass and dissipation data demonstrate the presence of aggregates on the surface. The aggregates are firmly attached and cannot be removed by addition of resins. On the other hand, resins and asphaltenes associate in bulk liquid and the adsorption from mixtures containing both resins and asphaltenes is markedly different from that obtained from the pure components. Hence, we conclude that preformed resin aggregates adsorb to the surface. These results are compared and discussed in relation to adsorption from crude oil diluted in heptane/toluene mixtures.  相似文献   

7.
The interaction between mucin and ions has been investigated by employing the quartz crystal microbalance technique with measurement of energy dissipation. The study was partially aimed at understanding the adsorption of mucin on surfaces with different chemistry, and for this purpose, surfaces exposing COOH, OH, and CH(3) groups were prepared. Mucin adsorbed to all three types of functionalized gold surfaces. Adsorption to the hydrophobic surface and to the charged hydrophilic surface (COOH) occured with high affinity despite the fact that in the latter case both mucin and the surface were negatively charged. On the uncharged hydrophilic surface exposing OH groups, the adsorption of mucin was very low. Another aim was to elucidate conformational changes induced by electrolytes on mucin layers adsorbed on hydrophobic surfaces from 30 mM NaNO(3). To this end, we investigated the effect of three electrolytes with increasing cation valance: NaCl, CaCl(2) and LaCl(3). At low NaCl concentrations, the preadsorbed layer expands, whereas at higher concentrations of NaCl the layer becomes more compact. This swelling/compacting of the mucin layer is fully reversible for NaCl. When the mucin layer instead is exposed to CaCl(2) or LaCl(3), compaction is observed at 1 mM. For CaCl(2), this process is only partially reversible, and for LaCl(3), the changes are irreversible within the time frame of the experiment. Finally, mucin interaction with the DTAB cationic surfactant in an aqueous solution of different electrolytes was evaluated with turbidimetry measurements. It is concluded that the electrolytes used in this work screen the association between mucin and DTAB and that the effect increases with increasing cation valency.  相似文献   

8.
Dynamic Monte Carlo (DMC) simulations of the adsorption of simple protein-like chains are used to more clearly define the molecular basis for the dependence of adsorption thermodynamics on the stability of the unique lowest-energy "native state" conformation of the chain. Arai and Norde were among the first to show that proteins of low native-state stability strongly denature upon adsorption to weakly attractive sorbent surfaces, while relatively modest changes in conformation are observed in stable proteins under identical adsorption conditions. When the protein has a low native-state stability, favorable adsorption entropies are typically observed in such systems, leading to the general belief that the chain gains conformational entropy during adsorption through a net reduction in intramolecular interactions specific to the native-state structure. Analysis of energy landscapes generated from our DMC simulation results show that a net loss in specific intramolecular interactions can lead to a positive delta(ads)S under certain adsorption conditions. However, the influence of chain conformation on delta(ads)S is found to correlate more directly with the manner in which the unique states of the system are distributed among the energy levels available to the adsorbed chain. Delta(ads)S is found to tend toward a maximum for adsorption processes described by thermally averaged energy landscapes in which the energy levels carrying the highest Boltzmann weights have a high degree of conformational degeneracy. This condition is met when the average interaction energy between the chain and the sorbent equals that between two hydrophobic segments of the chain.  相似文献   

9.
A capillary electrokinetics method is applied to measure the electrokinetic potential of the surface of quartz capillaries during the continuous flow of the aqueous solutions of a cationic polyelectrolyte (PE). At a low polymer concentration (10–5 g/l), the adsorption is determined mainly by the electrostatic forces and its kinetics, by the conformational rearrangement of adsorbed macromolecules. As the concentration of PE increases, the charge of quartz surface reverses; and further adsorption is due to the forces of hydrophobic and molecular attraction between macromolecules. The adsorption energy is estimated for this case. The charge reversal of the surface is associated with the presence of adsorption sites of two different types. At a low concentration of PE, the adsorption takes place on negatively charged sites of quartz surface. At higher concentrations of PE, after the neutralization of the surface, the adsorbed PE molecules become new adsorption sites, and the adsorption acquires two-layer character. After adsorption, the quartz surface is hydrophobized: the contact angle measured by the bubble method is close to 33°–34°.  相似文献   

10.
The adsorption of a linear- and bottle-brush poly(ethylene oxide (PEO))-based polymer, having comparable molecular weights, was studied by means of quartz crystal microbalance with dissipation monitoring ability (QCM-D) and AFM colloidal probe force measurements. The energy dissipation change monitored by QCM-D and the range of the steric forces obtained from force measurements demonstrated that linear PEO forms a more extended adsorption layer than the bottle-brush polymer, despite that the adsorbed mass is higher for the latter. Competitive adsorption studies revealed that linear PEO is readily displaced from the interface by the bottle-brush polymer. This was attributed to the higher surface affinity of the latter, which is governed by the number of contact points between the polymers and the interface, and the smaller loss of conformational entropy.  相似文献   

11.
Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments. To understand how the surface potentials affect the interaction at the interface, a binary-SAMs-modified Au electrode on a quartz crystal microbalance with dissipation detection (QCM-D) was used owing to the high weight sensitivity of QCM-D. In QCM-D, the frequency shift and the energy dissipation are monitored simultaneously to determine the adsorption behaviors of the plasmid DNA to surfaces of various potentials in Tris-buffered NaCl solutions of different pH. The results revealed that the plasmid DNA can be adsorbed on the SAM-modified surfaces electrostatically; thus, in general, the amount of adsorbed plasmid DNA decreased with increasing environmental pH and the decreasing ratio of the amine functional groups on the surfaces owing to weaker positive potentials on the surface. For the high amine-containing surfaces, due to the strong electrostatic attraction, denser films were observed, and thus, the apparent thickness decreased slightly. The negatively charged carboxylic acid surfaces can still adsorb the negatively charged plasmid DNA at some conditions. In other words, the electrostatic model cannot explain the adsorption behavior completely, and the induced dipole (Debye) interaction between the charged and polarizable molecules needs to be considered as well.  相似文献   

12.
The temperature influence (15–35 °C) on the adsorption mechanism and conformation of nonionic polymers (polyethylene glycol (PEG), polyethylene oxide (PEO) and polyvinyl alcohol (PVA)) on the zirconium dioxide surface was examined. The applied techniques (spectrophotometry, viscosimetry, potentiometric titration and microelectrophoresis) allowed characterization of the changes in structure and thickness of polymer adsorption layers with the increasing temperature. The rise of temperature favours more stretched conformation of polymer chains on the ZrO2 surface, which results in higher adsorption and thicker adsorption layer. Moreover, these conformational changes of adsorbed macromolecules affect the electric (solid surface charge density) and electrokinetic (zeta potential) properties of the zirconia–polymer interface. The obtained data indicate that the polyvinyl alcohol adsorption has a greater influence on zirconia properties in comparison to that of PEG and PEO. It is due to the presence of acetate groups in the PVA macromolecules (degree of hydrolysis 97.5%), which undergo dissociation.  相似文献   

13.
When simulating protein adsorption behavior, decisions must first be made regarding how the protein should be oriented on the surface. To address this problem, we have developed a molecular simulation program that combines an empirical adsorption free energy function with an efficient configurational search method to calculate orientation-dependent adsorption free energies between proteins and functionalized surfaces. The configuration space is searched systematically using a quaternion rotation technique, and the adsorption free energy is evaluated using an empirical energy function with an efficient grid-based calculational method. In this paper, the developed method is applied to analyze the preferred orientations of a model protein, lysozyme, on various functionalized alkanethiol self-assembled monolayer (SAM) surfaces by the generation of contour graphs that relate adsorption free energy to adsorbed orientation, and the results are compared with experimental observations. As anticipated, the adsorbed orientation of lysozyme is predicted to be dependent on the discrete organization of the functional groups presented by the surface. Lysozyme, which is a positively charged protein, is predicted to adsorb on its 'side' on both hydrophobic and negatively charged surfaces. On surfaces with discrete positively charged sites, attractive interaction energies can also be obtained due to the presence of discrete local negative charges present on the lysozyme surface. In this case, 'end-on' orientations are preferred. Additionally, SAM surface models with mixed functionality suggest that the interactions between lysozyme and surfaces could be greatly enhanced if individual surface functional groups are able to access the catalytic cleft region of lysozyme, similar to ligand-receptor interactions. The contour graphs generated by this method can be used to identify low-energy orientations that can then be used as starting points for further simulations to investigate conformational changes induced in protein structure following initial adsorption.  相似文献   

14.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.  相似文献   

15.
Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers with various grafting ratios were adsorbed to niobium pentoxide-coated silicon wafers and characterized before and after protein adsorption using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Three proteins of different sizes, myoglobin (16 kD), albumin (67 kD), and fibrinogen (340 kD), were studied. XPS was used to quantify the amount of protein adsorbed to the bare and PEGylated surfaces. ToF-SIMS and principal component analysis (PCA) were used to study protein conformational changes on these surfaces. The smallest protein, myoglobin, generally adsorbed in higher numbers than the much larger fibrinogen. Protein adsorption was lowest on the surfaces with the highest PEG chain surface density and increased as the PEG layer density decreased. The highest adsorption was found on lysine-coated and bare niobium surfaces. ToF-SIMS and PCA data evaluation provided further information on the degree of protein denaturation, which, for a particular protein, were found to decrease with increasing PEG surface density and increase with decreasing protein size.  相似文献   

16.
The configuration of BSA macromolecules adsorbed on the surfaces of poly(alkylcyanoacrylate) nanoparticles has been determined using small angle neutron scattering (SANS). The nanoparticles were made by anionic emulsion polymerization (AEP) and self-assembly of dextran–poly(isobutylcyanoacrylate) (PICBA) copolymers. They have a hydrophobic PICBA core and a hydrophilic dextran corona. In vivo, they are recognized by the macrophages of the mononuclear phagocyte system. The amount of BSA bound to the particles, at adsorption equilibrium, has been determined through immunodiffusion, immunoelectrophoresis, and SANS. For particles with a radius of 25.3 nm, the adsorption was found to saturate at 64 adsorbed BSA molecules per particle. The configuration of the adsorbed BSA molecules was determined from the SANS scattering curves, first at full contrast, and then at contrast match. Both experiments indicate that the BSA molecules are adsorbed on the PICBA core, in a flat configuration. This result may be important for understanding the in vivo opsonization mechanisms of nanoparticles and their resulting biodistribution.  相似文献   

17.
18.
Ultraviolet induced nanoparticle colloid jet machining is a new ultra-precision machining technology utilizing the reaction between nanoparticles and the surface of the workpiece to achieve sub-nanometer ultra-smooth surface manufacturing without damage. First-principles calculations based on the density functional theory (DFT) were carried out to study the atomic material removal mechanism of nanoparticle colloid jet machining and a series of impacting and polishing experiments were conducted to verify the mechanism. New chemical bonds of Ti-O-Si were generated through the chemical adsorption between the surface adsorbed hydroxyl groups of the TiO2 cluster and the Si surface with the adsorption energy of at least −4.360 eV. The two Si-Si back bonds were broken preferentially and the Si atom was removed in the separation process of TiO2 cluster from the Si surface realizing the atomic material removal. A layer of adsorbed TiO2 nanoparticles was detected on the Si surface after 3 min of fixed-point injection of an ultraviolet induced nanoparticle colloid jet. X-ray photoelectron spectroscopy results indicated that Ti-O-Si bonds were formed between TiO2 nanoparticles and Si surface corresponding to the calculation result. An ultra-smooth Si workpiece with a roughness of Rq 0.791 nm was obtained by ultraviolet induced nanoparticle colloid jet machining.  相似文献   

19.
The complex mechanisms of protein adsorption at the solid-liquid interface is of great importance in many research areas, including protein purification, biocompatibility of medical implants, biosensing, and biofouling. The protein adsorption process depends crucially on both the nanoscale chemistry and topography of the interface. Here, we investigate the adsorption of the cell-binding protein fibronectin on flat and nanometer scale rough tantalum oxide surfaces using ellipsometry and quartz crystal microbalance with dissipation (QCM-D). On the flat tantalum oxide surfaces, the interfacial protein spreading causes an increase in the rigidity and a decrease in the thickness of the adsorbed fibronectin layer with decreasing bulk protein concentration. For the tantalum oxide surfaces with well-controlled, stochastic nanometer scale roughness, similar concentration effects are observed for the rigidity of the fibronectin layer and saturated fibronectin uptake. However, we find that the nanorough tantalum oxide surfaces promote additional protein conformational changes, an effect especially apparent from the QCM-D signals, interpreted as an additional stiffening of the formed fibronectin layers.  相似文献   

20.
The adsorption of bovine serum albumin (BSA) on platinum surfaces with a root-mean-square roughness ranging from 1.49nm to 4.62nm was investigated using quartz crystal microbalance with dissipation (QCM-D). Two different BSA concentrations, 50microg/ml and 1mg/ml, were used, and the adsorption studies were complemented by monitoring the antibody interaction with the adsorbed BSA layer. The adsorption process was significantly influenced by the surface nano-roughness, and it was observed that the surface mass density of the adsorbed BSA layer is enhanced in a non-trivial way with the surface roughness. From a close examination of the energy dissipation vs. frequency shift plot obtained by the QCM-D technique, it was additionally observed that the BSA adsorption on the roughest surface is subject to several distinct adsorption phases revealing the presence of structural changes facilitated by the nano-rough surface morphology during the adsorption process. These changes were in particular noticeable for the adsorption at the low (50microg/ml) BSA concentration. The results confirm that the nano-rough surface morphology has a significant influence on both the BSA mass uptake and the functionality of the resulting protein layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号