首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

2.
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.  相似文献   

3.
In this work we describe a micro-electrospray ionization source equipped with an atmospheric pressure external ion shutter. The solenoid-activated shutter prevents the electrospray plume from entering the inlet capillary unless triggered to the 'open' position. When in the 'closed' position, a stable electrospray plume is maintained between the electrospray ionization (ESI) emitter and the electrically isolated face of the shutter. When the shutter is triggered, a 'slice' of ions is allowed to enter the inlet capillary and is subsequently accumulated in an external ion reservoir comprised of a radio frequency only (rf-only) hexapole and a pair of electrostatic elements. Following ion accumulation in the external ion reservoir, intact molecular ions of proteins, oligonucleotides, and noncovalent complexes can be stored for extended intervals (>30 minutes) prior to being transferred to the Fourier transform ion cyclotron resonance (FTICR) trapped ion cell for mass analysis. By introducing reactive gases directly into the external ion reservoir during the storage interval, ion-molecule reactions, such as H/D exchange, can be performed at high effective pressures. This scheme obviates the need for the long reaction times and delays associated with restoring base pressure in the trapped ion cell and allows H/D exchange reactions to be conducted in a fraction of the time required using conventional in-cell exchange approaches. The back face of the shutter arm contains an elastomeric material which can be positioned to seal the inlet to the mass spectrometer resulting in lower base pressure in the ion reservoir and the FTICR cell. Additionally, it is noted that blocking the ESI plume during non-accumulation events results in reduced fouling of the source electrodes and longer times between required source cleaning.  相似文献   

4.
Controlled in-source ion-molecule reactions are performed for the first time in an external matrix assisted laser desorption ionization (MALDI) source of a Fourier transform ion cyclotron resonance mass spectrometer. The MALDI source with a hexapole ion guide that was originally designed to incorporate pulsed gas to collisionally cool ions (Baykut, G.; Jertz, R.; Witt, M. Rapid Commun. Mass Spectrom. 2000, 14, 1238-1247) has been modified to allow the study of in-source ion-molecule reactions. Upon laser desorption, a reaction gas was introduced through a second inlet and allowed to interact with the MALDI-generated ions trapped in the hexapole ion guide. Performing ion-molecule reactions in the high pressure range of the ion source prior to analysis in the ion cyclotron resonance (ICR) cell allows to maintain the ultra high vacuum in the cell which is crucial for high mass resolution measurements. In addition, due to the reaction gas pressure in the hexapole product ion formation is much faster than would be otherwise possible in the ICR cell. H/D exchange reactions with different peptides are investigated, as are proton-bound complex formations. A typical experimental sequence would be ion accumulation in the hexapole ion guide from multiple laser shots, addition of cooling gas during ion formation, addition of reaction gas, varied time delays for the ion-molecule reactions, and transmission of the product ions into the ICR cell for mass analysis. In this MALDI source H/D exchange reactions for different protonated peptides are investigated, as well as proton-bound complex formations with the reaction gas triethylamine. Amino acid sequence, structural flexibility and folding state of the peptides can be seen to play a part in the reactivity of such ions.  相似文献   

5.
The structure of melittin bound to dodecylphosphocholine (DPC) micelles was investigated using hydrogen–deuterium (H/D) exchange in conjunction with collision induced dissociation (CID) in an rf-only hexapole ion guide with electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS). The deuterium incorporation into backbone amide hydrogens of melittin with or without DPC micelles was analyzed at different time points examining the mass of each fragment ion produced by hexapole CID. When melittin existed alone in aqueous solution, more than 80% of amide hydrogens was exchanged within 10 s, and the deuterium content in each fragment ion showed high values throughout the experiments. When melittin was bound to DPC micelles, the percentage of deuterium incorporation into the fragment decreased remarkably at any time point. It increased little by little as the exchange period prolonged, indicating that some stable structure was formed by the interaction with DPC. The results obtained here were consistent with the previous studies on the helical structure of melittin carried out by NMR and CD analyses. The strategy using H/D exchange and MS analysis might be useful for studying structural changes of peptides and proteins caused by phospholipid micelles. It could also be applied to membrane-bound proteins to characterize their structure.  相似文献   

6.
Isotopic exchange of mass-selected odd- and even-electron molecular ions of aromatic compounds upon collision with deuterated gases was investigated as a function of reagent gas, interaction time and collision energy. Use of ND3 as reagent allows exchange of all active hydrogens for the compound types studied, providing a count of the total number of active hydrogens present in the analyte. CH3OD exchanges specific types of active hydrogens, such as phenolic and carboxylic hydrogens, without exchanging amino hydrogens. This selectivity assists in the identification and enumeration of different types of active hydrogens present in polyfunctional compounds. The H–D exchange patterns serve to differentiate isomeric aromatic compounds containing methoxy, amino, hydroxy and carboxylic acid substituents. Trapping of mass-selected ions in the collision region of a triple quadrupole mass spectrometer greatly enhances the degree of H–D exchange, thereby facilitating determination of the number of active hydrogens in the analyte. Triple stage mass spectrometric experiments, performed in a pentaquadrupole mass spectrometer, help elucidate the exchange process. Isotopic exchange in the collision region of a tandem mass spectrometer also provides insights into the site of protonation in molecules containing several functional groups. The proximity of the functional groups and the proton affinity difference between the analyte and the reagent gas are important factors in site-specific H–D exchange in polyfunctional compounds. An investigation of the effects of collision energy reveals that cluster ion formation plays a major role in the exchange mechanism operating in the triple quadrupole and that H–D exchange, ion-molecule adduct formation and endothermic fragmentation are competitive reaction channels.  相似文献   

7.
H/D exchange is a method commonly used to probe molecular structure. The majority of studies in the gas phase have involved protonated molecular ions. The present study gives attention to molecular ions formed by coordination with a sodium ion. In particular, ND(3) is reacted with sodiated glycine oligomers, Gly(n)(), where n = 1-5, and the results are interpreted using density functional calculations. Experimentally, Gly(1)Na(+), Gly(4)Na(+), and Gly(5)Na(+) all undergo three fast exchanges with ND(3), while Gly(2)Na(+) and Gly(3)Na(+) undergo one fast and two slow exchanges with ND(3). The methyl esters Gly(3)OMeNa(+) and Gly(5)OMeNa(+) do not exchange with ND(3). In agreement with earlier experimental studies, theoretical calculations show that the lowest-energy conformers of the sodiated glycine oligomers are charge-solvated structures. Calculations further indicate that, in the process of H/D exchange with ND(3), sodiated monoglycine and tetraglycine adopt zwitterionic structures, sodiated diglycine adopts a salt-bridge form, and sodiated triglycine takes on an ion-stabilized ion pair form. Sodiated monoglycine and diglycine exchange via an onium-ion mechanism. The proposed exchange mechanisms require a carboxylic acid hydrogen to complete the exchange, which is in agreement with the experimental results showing that no exchange occurs with methyl ester glycine oligomers. These studies clearly demonstrate that, in the process of H/D exchange, noncovalent complexation of the exchange reagent provides the energy required to access intermediates structurally distinct from the parent ions. H/D exchange is facile for these intermediates. Contrary to the assumption often expressed in earlier studies, H/D exchange kinetics may not directly reflect ion structures.  相似文献   

8.
An electrospray ionization (ESI)/fast-flow technique has been applied to the study of gas phase hydrogen/deuterium (H/D) exchange kinetics. Multiply charged ubiquitin ions [ubiquitin + nH](n)(+), in charge states n = 7-13, were reacted with ND(3). The behavior of ND(3) as exchange reagent is different from that of the previously studied reagents, D(2)O and CH(3)OD. Contrary to those, the maximum number of exchanged hydrogen atoms and the overall exchange rate were observed to increase with increasing charge state of the ubiquitin ions. The results are reagent-dependent because the exchange mechanisms are different for the different reagents. This observation is in agreement with a recent conclusion by Beauchamp and co-workers that contrary to the assumption often expressed in earlier studies, H/D exchange kinetics may not directly reflect ion structures. The results for all three reagents are, however, consistent with observations of previous ion mobility experiments that with increasing charge state the conformers change from more compact, partially folded structures to elongated nearly linear ones. H/D exchange of (ubiquitin + 13H)(13+) with ND(3) leads to two separated ion populations reflecting the possible existence of two conformers with different exchange rates. The ions (ubiquitin + 8H)(8+) and (ubiquitin + 11H)(11+) represent a partially folded structure and an unfolded structure, respectively, and were studied in greater detail. The relative abundances of ions were measured in steps of 0.5 m/z (mass-to-charge ratio), as a function of the ND(3) flow rate. The experimental results were simulated by computer fitted curves based on a recently developed algorithm. The algorithm allows the extraction of sets of grouped rate constants. Eight rate constant groups were deduced for each of the two ions. These rate constants correspond to 32 and 44 H/D exchanges for the 8+ and 11+ charged ions, respectively. The results indicate higher individual rates for most of the exchanged atoms in the 11+ ion compared to the 8+ ion.  相似文献   

9.
A new matrix-assisted laser desorption/ionization (MALDI) source for Fourier transform ion cyclotron resonance mass spectrometry (FTMS) has been developed. The new source is equipped with a hexapole ion guide. The sample on the laser target is one millimeter from the hexapole ion guide, so that ions are desorbed directly into the guide. A device for pulsing collision gas in direct proximity to the laser target makes it possible to cool the ions, which have a kinetic energy spread of several electron volts when produced by the MALDI process. These ions are trapped in the hexapole where positive potentials at the laser target and at an extraction plate help trap ions along the longitudinal axis. After a pre-defined trapping time the voltage of the extraction plate is reversed and the trapped ions are extracted for transmission to the ion cyclotron resonance cell. Accumulation of ions from multiple laser shots in the hexapole before mass spectrometric analysis increases sensitivity. Preliminary sensitivity studies with substance P show that 10 attomoles of analyte applied on the target can be detected with a signal-to-noise (S/N) ratio >15.  相似文献   

10.
A new ion source has been developed for Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) that enables quick changes between matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) modes. When operating as an ESI source, the sample solution is sprayed through an angled nebulizer. The generated ions pass through a glass capillary followed by a skimmer and three sequential hexapole ion guides. Ions can be accumulated in the third hexapole (storage hexapole) before they are injected into the ICR trap. The second hexapole is mounted on a movable platform which also carries the MALDI sample plate. During the switch from ESI to MALDI, this platform moves the second hexapole out of the hexapole series and locates a MALDI sample plate with 384 sample positions into the area directly in front of the storage hexapole. The storage hexapole is in a medium pressure chamber (MPC) which has windows both for the incoming laser beam and for the observation optics, as well as a gas tube for pulsing collision gas into the chamber. During the MALDI operation the focused laser beam enters the MPC, passes between the hexapole rods and irradiates a MALDI sample on the target plate. The sample molecules are desorbed/ionized into the storage hexapole and simultaneously cooled by collisions with the pulsed gas. Ions desorbed from multiple laser shots can be accumulated in this hexapole before they are transferred to the ICR trap. With the combined ion source a computer-controlled switch between MALDI and ESI modes is possible in less than a minute, depending on the position of the MALDI target on the 384-spot plate. Immediate acquisition of mass spectra is possible after mode switching without the need for tuning or re-calibration.  相似文献   

11.
The gas-phase hydrogen/deuterium (H/D) exchange kinetics of DNA G-quadruplexes has been investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The quadruplex [(TGGGGT)4 . 3NH4+] undergoes very fast H/D exchange, in both the positive and in the negative ion modes, compared to DNA duplexes and other quadruplexes tested, and compared to the corresponding single-stranded TGGGGT. Substitution of NH4+ for K+ did not alter this fast H/D exchange, indicating that the hydrogens of the ammonium ions are not those exchanged. However, stripping of the interior cations of the quadruplex by source collision-induced dissociation (CID) in the positive ion mode showed that the presence of the inner cations is essential for the fast exchange to be possible. Molecular dynamics simulations show that the G-quadruplex is very rigid in the gas phase with NH4+ ions inside the tetrads. We suggest that the fast H/D exchange is favored by this rigid quadruplex conformation. This example illustrates that the concept that compact DNA structures exchange H for D slower than unfolded ones is a misconception.  相似文献   

12.
Hydrogen/deuterium exchange reactions involving protonated triglycine and deuterated ammonia (ND(3)) have been examined in the gas phase using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Ab initio and density functional theory (DFT) calculations have been carried out to model the exchanges and to obtain energetics and vibrational frequencies for molecules involved in the proposed exchange mechanisms. Structural optimization and frequency calculations have been performed at the B3LYP level of theory with the 6-311+G(d,p) basis set. Transition states have been calculated at the same level of theory and basis set as above using the QST2 and QST3 methods. Single-point energy calculations have been performed at the MP2/6-311+G(d,p) level. Six labile sites of protonated triglycine were found to undergo H/D exchange. Of these six labile hydrogens, two are amide, three are ammonium, and one is carboxyl. Detailed mechanisms for each of these transfers are proposed. Qualitative onium ion and tautomer mechanisms for the exchanges of ammonium and amide hydrogens, respectively, using semiempirical calculations were suggested in previous studies by Beauchamp et al. As shown by the current ab initio and DFT calculations completed during this study, the mechanisms proposed in that study are notionally correct; however, the tautomer mechanisms are shown here to be the result of the fact that a second stable isomer of protonated triglycine exists in which the amide1 carbonyl oxygen is protonated. The exchange of the carboxyl hydrogen is found to proceed via a transition state resembling an ammonium ion interacting with a carboxylate moiety via two hydrogen bonds. The current work thus provides significant mechanistic and structural detail for a considerably more in-depth understanding of the processes involved in gas phase H/D exchange of peptides.  相似文献   

13.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

14.
ESI and CID mass spectra were obtained for two purine nucleoside antiviral agents (acycloguanosine and vidarabine) and one purine nucleotide (vidarabine monophosphate) and the corresponding compounds in which the labile hydrogens were replaced by deuterium gas phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M+H](+) and [M -H](-) ions and the exchanged analogs, [M(Dx)+D](+) and [M(Dx)-D](-), produced by ESI using a Sciex API-IIIplus mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the CID mass spectra of the undeuterated and deuterated species. Protonated purine antiviral agents dissociate through rearrangement decompositions of base-protonated [M+H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the same bonds with charge retention on the sugar moiety gives low abundance ions, due to the low proton affinity of the sugar moiety compared to that of purine base. CID of protonated purine bases [B+H](+) occurs through two major pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). Deprotonated acycloguanosine and vidarabine exhibit the deprotonated base [B-H](-) as a major fragment from glycosidic bond cleavage and charge delocalization on the base. Deprotonated vidarabine monophosphate, however, shows predominantly phosphate related product ions. CID of deprotonated guanine shows two principal pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). The dissociation reactions of deprotonated adenine, however, proceed by elimination of HCN and (2) elimination of NCHNH (NCHND). The mass spectra of the antiviral agents studied in this paper may be useful in predicting reaction pathways in other heteroaromatic ring decompositions of nucleosides and nucleotides.  相似文献   

15.
The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed.  相似文献   

16.
The hydrogen/deuterium (H/D) exchange of gas-phase ions of holo- and apo-myoglobin has been studied by confining the ions in a linear quadrupole ion trap with D(2)O or CD(3)OD at a pressure of several mTorr. Apo-myoglobin ions were formed by collision-induced dissociation of holo-myoglobin ions between the orifice and skimmer of the ion sampling system. The exchange takes place on a time scale of seconds. Earlier cross section measurements have shown that holo-myoglobin ions can have more compact structures than apo-myoglobin. Despite this, both holo-myoglobin and apo-myoglobin in charge states +8 to +14 are found to exchange nearly the same number of hydrogens (ca. 103) in 4 s. It is possible the ions fold or unfold to new conformations on the much longer time scale of the exchange experiment compared with the cross section measurements.  相似文献   

17.
The Pd/C-catalyzed efficient and regioselective hydrogen-deuterium (H-D) exchange reaction on the benzylic site proceeded in D2O in the presence of a small amount of H2 gas. The use of the Pd/C-ethylenediamine complex [Pd/C(en)] as a catalyst instead of Pd/C led to the efficient deuterium incorporation into the benzylic site of O-benzyl protective groups without hydrogenolysis. These H-D exchange reactions provide a post synthetic and D(2)-gas-free deuterium-labeling method on a wide variety of benzylic sites using D2O as the deuterium source and heterogeneous Pd/C or Pd/C(en) as a reusable heterogeneous palladium catalyst under mild and neutral conditions.  相似文献   

18.
The gas-phase structures of protonated (deoxy)nucleoside-5'- and 3'-monophosphates (mononucleotides) have been examined by the use of gas-phase hydrogen/deuterium (H/D) exchange and high-field Fourier-transform ion cyclotron resonance mass spectrometry. These nucleotides were reacted with three different deuterating reagents: ND3, D2O, and D2S, of which ND3 was the most effective. All mononucleotides fully exchanged their labile hydrogen for deuterium with ND3 with the exception of deoxycytidine-3'-monophosphate, deoxyadenosine-5'-monophosphate, adenosine-5'-monophosphate, and adenosine-3'-monophosphate. Semiempirical calculations demonstrate the presence of hydrogen bonding upon protonation of the purine mononucleotides which may lead to incomplete H/D exchange. H/D exchange rates differed between the deoxymononucleotides and the ribomononucleotides, suggesting that the 2'-OH group plays an important role in the exchange process. Reactions of nucleosides and mononucleotides with D2O demonstrate that a structure-specific long-lived ion-molecule complex between D2O and the mononucleotide involving the phosphate group is necessary for exchange to overcome the high-energy activation barrier. In contrast, a structure-specific long-lived ion-molecule complex between the mononucleotides and ND3 is not required for exchange to occur.  相似文献   

19.
The gas phase H/D exchange reactions of bradykinin (M + 3H)3+ ions with D2O and DI were monitored in a quadrupole ion trap mass spectrometer. The H/D exchange kinetics of both chemical probes (D2O and DI) indicate the presence of two noninterconverting reactive gas phase ion populations of bradykinin (M + 3H)3+ at room temperature. The H/D exchange involving DI, however, generally proceeds faster than that involving D2O. The rate observations described here can be rationalized on the basis of the "relay mechanism" (see Campbell et al. J. Am. Chem. Soc. 1995, 117, 12840-12854) recently proposed to account for H/D exchange between D2O and gaseous protonated polypeptides. The higher exchange rate with DI is believed to arise primarily as a result of its lower gas-phase acidity relative to that of D2O and, secondarily, as a result of the longer bond length of DI relative to that of OD in D2O.  相似文献   

20.
Gas-phase hydrogen/deuterium exchange of small oligonucleotides (dTG, dC(6) and C(6)) with CD(3)OD was performed in the second hexapole of a Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer. Ion activation experiments were conducted by accelerating the ions at the entrance of the H/D exchange cell under conditions promoting exclusively collisional isomerization. These experiments allowed us to assess the presence of several conformers, and to probe the height of the isomerization barrier separating these conformers. Ion mobility experiments were also performed. Their results were consistent with the H/D exchange data. A model accounting for the competing isomerization and H/D exchange reactions is proposed. Comparing the ion acceleration experiments for H/D exchange and for ion mobility reveals that the most compact conformer displays the fastest H/D exchange. This observation shows that H/D exchange and ion mobility provide us with complementary information because hydrogen accessibility and macromolecule compactness are not univocally associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号