首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramoplanin is a lipglycodepsipeptide antibiotic that inhibits peptidoglycan biosynthesis. Its mechanism of action has been the subject of debate. It was originally proposed to inhibit the MurG step of peptidoglycan synthesis by binding Lipid I. In this paper, we report that ramoplanin inhibits bacterial transglycosylases by binding to Lipid II, the substrate for these enzymes. The inhibition curves reveal that the inhibitory species has a stoichiometry of 2:1 ramoplanin:Lipid II. A Job titration confirms that ramoplanin binds as a dimer to Lipid II. The apparent dissociation constant is in the nanomolar range, which is unusually low given the nature of the interacting species. We show that Lipid II binding is coupled to the formation of a higher order species, which may explain the tight binding. We also present a testable model for the binding-competent dimeric conformation of ramoplanin.  相似文献   

2.
The peptide antibiotic ramoplanin is highly effective against several drug-resistant gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Ramoplanin inhibits bacterial peptidoglycan (PG) biosynthesis by binding to Lipid intermediates I and II at a location different than the N-acyl-D-Ala-D-Ala dipeptide site targeted by vancomycin. Lipid I/II capture physically occludes these substrates from proper utilization by the late-stage PG biosynthesis enzymes MurG and the transglycosylases. Key structural features of ramoplanin responsible for antibiotic activity and PG molecular recognition have been discovered by antibiotic semisynthetic modification in conjunction with NMR analyses. These results help define a minimalist ramoplanin pharmacophore and introduce the possibility of generating ramoplanin-derived peptide or peptidomimetic antibiotics for use against VRE, MRSA, and related pathogens.  相似文献   

3.
4.
5.
To better understand how enzyme localization affects enzyme activity we studied the cellular localization of the glycosyltransferase MurG, an enzyme necessary for cell wall synthesis at the spore during sporulation in the bacterium Bacillus subtilis. During sporulation MurG was gradually enriched to the membrane at the forespore and point mutations in a MurG helical domain disrupting its localization to the membrane caused severe sporulation defects, but did not affect localization nor caused detectable defects during exponential growth. We found that this localization is dependent on the phospholipid cardiolipin, as in strains where the cardiolipin-synthesizing genes were deleted, MurG levels were diminished at the forespore. Furthermore, in this cardiolipin-less strain, MurG localization during sporulation was rescued by external addition of purified cardiolipin. These results support localization as a critical factor in the regulation of proper enzyme function and catalysis.  相似文献   

6.
The glycopeptide antibiotics prevent maturation of the bacterial cell wall by binding to the terminal d-alanyl-d-alanine moiety of peptidoglycan precursors, thereby inhibiting the enzymes involved in the final stages of peptidoglycan synthesis. However, there are significant differences in the biological activity of particular glycopeptide derivatives that are not related to their affinity for d-Ala-d-Ala. We compare the ability of vancomycin and a set of clinically relevant glycopeptides to inhibit Staphylococcus aureus PBP2 (penicillin binding protein), the major transglycosylase in a clinically relevant pathogen, S. aureus. We report experiments suggesting that activity differences between glycopeptides against this organism reflect a combination of substrate binding and secondary interactions with key enzymes involved in peptidoglycan synthesis.  相似文献   

7.
Vancomycin‐resistant Staphylococcus aureus (S. aureus) (VRSA) uses depsipeptide‐containing modified cell‐wall precursors for the biosynthesis of peptidoglycan. Transglycosylase is responsible for the polymerization of the peptidoglycan, and the penicillin‐binding protein 2 (PBP2) plays a major role in the polymerization among several transglycosylases of wild‐type S. aureus. However, it is unclear whether VRSA processes the depsipeptide‐containing peptidoglycan precursor by using PBP2. Here, we describe the total synthesis of depsi‐lipid I, a cell‐wall precursor of VRSA. By using this chemistry, we prepared a depsi‐lipid II analogue as substrate for a cell‐free transglycosylation system. The reconstituted system revealed that the PBP2 of S. aureus is able to process a depsi‐lipid II intermediate as efficiently as its normal substrate. Moreover, the system was successfully used to demonstrate the difference in the mode of action of the two antibiotics moenomycin and vancomycin.  相似文献   

8.
Bacterial Ser/Thr kinases modulate a wide number of cellular processes. In Bacillus subtilis , the Ser/Thr kinase PrkC has been shown to induce germination of bacterial spores in response to DAP-type but not Lys-type cell wall muropeptides. Muropeptides are a clear molecular signal that growing conditions are promising, since they are produced during cell wall peptidoglycan remodeling associated with cell growth and division of neighboring bacteria. However, whether muropeptides are able to bind the protein physically and how the extracellular region is able to distinguish the two types of muropeptides remains unclear. Here we tackled the important question of how the extracellular region of PrkC (EC-PrkC) senses muropeptides. By coupling NMR techniques and protein mutagenesis, we exploited the structural requirements necessary for recognition and binding and proved that muropeptides physically bind to EC-PrkC through DAP-moiety-mediated interactions with an arginine residue, Arg500, belonging to the protein C-terminal PASTA domain. Notably, mutation of this arginine completely suppresses muropeptide binding. Our data provide the first molecular clues into the mechanism of sensing of muropeptides by PrkC.  相似文献   

9.
Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and beta-lactamases, resistance enzymes to beta-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for beta-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7beta-[N-Acetyl-L-alanyl-gamma-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporin bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC beta-lactamase from Escherichia coli was solved at 1.71 A resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the -lactamase active site. Furthermore, insertion of a peptide in the beta-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the beta-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.  相似文献   

10.
BACKGROUND: The glycopeptide antibiotic vancomycin complexes DAla-DAla termini of bacterial cell walls and peptidoglycan precursors and interferes with enzymes involved in murein biosynthesis. Semisynthetic vancomycins incorporating hydrophobic sugar substituents exhibit efficacy against DAla-DLac-containing vancomycin-resistant enterococci, albeit by an undetermined mechanism. Contrasting models that invoke either cooperative dimerization and membrane anchoring or direct inhibition of bacterial transglycosylases have been proposed to explain the bioactivity of these glycopeptides. RESULTS: Affinity chromatography has revealed direct interactions between a semisynthetic hydrophobic vancomycin (DCB-PV), and select Escherichia coli membrane proteins, including at least six enzymes involved in peptidoglycan assembly. The N(4)-vancosamine substituent is critical for protein binding. DCB-PV inhibits transglycosylation in permeabilized E. coli, consistent with the observed binding of the PBP-1B transglycosylase-transpeptidase. CONCLUSIONS: Hydrophobic vancomycins interact directly with a select subset of bacterial membrane proteins, suggesting the existence of discrete protein targets. Transglycosylase inhibition may play a role in the enhanced bioactivity of semisynthetic glycopeptides.  相似文献   

11.
12.
Peptidoglycan is an essential component of bacterial cell wall. The glycan strands of peptidoglycan are synthesized by enzymes called peptidoglycan glycosyltransferases (PGTs). Using a high-resolution SDS-PAGE assay, we compared the glycan strand lengths of four different PGTs from three different organisms (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). We report that each enzyme makes a polymer having an intrinsic characteristic length that is independent of the enzyme:substrate ratio. The glycan strand lengths vary considerably, depending on the enzyme. These results indicate that each enzyme must have some mechanism, as yet unknown, for controlling product length. The observation that different PGTs produce different length glycan chains may have implications for their cellular roles and for the three-dimensional structure of bacterial peptidoglycan.  相似文献   

13.
Several 2'-substituted-2'-deoxyribonucleotides are potent inactivators of the enzyme ribonucleotide reductase (RNR), by destroying the essential tyrosyl radical located in subunit R2 or/and covalently alkylating the subunit R1. In the absence of external reductants, the inactivation is achieved by alkylation of subunit R1 by a methylene-3(2H)-furanone. The furanone is generated in solution through degradation of a keto-deoxyribonucleotide intermediate, produced during the inhibitory mechanism of a wide group of 2'-substituted inhibitors, and is easily detected experimentally by UV spectroscopy. Interestingly, the same keto-deoxyribonucleotide is also a proposed intermediate of the normal substrate pathway, but by some unknown reason, it does not dissociate from the active site and does not inactivate the enzyme. Therefore, if the currently accepted mechanism for substrate reduction is correct, there must be some specific reason that makes such a reactive intermediate behave differently, not dissociating from the active site during substrate reduction. In this article, we propose to validate the current substrate mechanism by showing that the keto-deoxyribonucleotide dissociates from the active site only in the case of the inhibitors, and therefore, it corresponds to a viable intermediate in the substrate mechanism. Furthermore, we answer unexplained experimental observations that concern the predomination of the normal reduction mechanism over the abnormal ketone formation in the FdNDP and the release of F(-), either in the normal or in the abnormal turnover. For that purpose, we have investigated the interaction between the enzyme and this keto-deoxyribonucleotide generated from the normal substrate and from two widely studied representative inhibitors. A model containing 140 atoms was used to represent the desired structures. The results allowed us to conclude that the solvation free energy of the 2'-substituents, its influence inside the active site, and the charge transfer mechanism from a protein side chain to solution are the thermodynamic driving forces for the intermediate dissociation and subsequent RNR inhibition. Such charge transfer cannot be accomplished by the natural substrate, preventing its dissociation. These results elucidate a paradox which has been unexplained for more than 20 years and further validates both the proposed substrate and inhibition chemical mechanisms.  相似文献   

14.
The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzyme's time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate.  相似文献   

15.
Nucleotide-glycosyltransferases (NDP-Gtfs) play key roles in a wide range of biological processes. It is difficult to probe the roles of individual glycosyltransferases or their products because, with few exceptions, selective glycosyltransferase inhibitors do not exist. Here, we investigate a high-throughput approach to identify glycosyltransferase inhibitors based on a fluorescent donor displacement assay. We have applied the screen to E. coli MurG, an enzyme that is both a potential antibiotic target and a paradigm for a large family of glycosyltransferases. We show that the compounds identified in the donor-displacement screen of MurG are selective for MurG over other enzymes that use similar or identical substrates, including structurally related enzymes. The donor displacement assay described here should be adaptable to many other NDP-Gtfs and represents a new strategy to identify selective NDP-Gtf inhibitors.  相似文献   

16.
Treatment of 1,4-benzodiazepinone derivatives with a Wittig-Horner reagent, led to the desired carbon? carbon bond formation at the amide carbonyl carbon atom in reasonable yield. An examination of this reaction has shown that only secondary amides can be used, indicating that this process requires the amide proton. This observation would exclude the accepted mechanism for Wittig-Horner type reactions (four membered spiro ring intermediate), and an alternate mechanism, that involves cleavage of the anion prior to addition of the reagent to substrate is proposed.  相似文献   

17.
Enduracidin and ramoplanin belong to the large family of cyclodepsipeptide antibiotics, highly effective against Gram-positive bacteria. The primary and 3D solution structure of ramoplanin is already well known, and the primary structure of enduracidin has been determined by a combination of chemical and NMR spectroscopic methods. Both antibiotics share a similar peptide core of 17 amino acids and differ mainly in the length of the acyl chain and the presence of two D-mannose moieties in ramoplanin. Based on the high sequence homology with ramoplanin, the structure in solution of enduracidin is modeled as a cyclic peptide. The tertiary structure thus obtained was refined through molecular dynamics (MD) simulation, in which the interatomic NOE-derived distance restraints were imposed. MD simulations yielded a family of representative 3D structures (RMSD = 0.89), which highlighted a backbone geometry similar to that of ramoplanin in its beta-hairpin arrangement. In contrast, enduracidin displays a different arrangement of the side-chain and of the residues forming the hydrophobic core.  相似文献   

18.
Beta-amino acids are widely used building blocks in both natural and synthetic compounds. Aromatic beta-amino acids can be biosynthesized directly from proteinogenic alpha-amino acids by the action of MIO (4-methylideneimidazole-5-one)-based aminomutase enzymes. The uncommon cofactor MIO plays a role in both ammonia lyases and 2,3-aminomutases; however, the precise mechanism of the cofactor has not been resolved. Here we provide evidence that the electrophilic cofactor uses covalent catalysis through the substrate amine to direct the elimination and subsequent readdition of ammonia. A mechanism-based inhibitor was synthesized and the X-ray cocomplex structure was determined to 2.0 A resolution. The inhibitor halts the chemistry of the reverse reaction, providing a stable complex that establishes the mode of substrate binding and the importance of tyrosine 63 in the chemistry. The proposed mechanism is consistent with the biochemistry of aminomutases and ammonia lyases and provides strong support for an amine-adduct mechanism of catalysis for this enzyme class.  相似文献   

19.
A method has been developed and validated for the quantification of ramoplanin, a 2554 Da peptide antibiotic, in human dried blood spots using high‐performance liquid chromatography with tandem mass spectrometric detection. The validation data meet FDA acceptance criteria for bioanalytical assays and cover the quantification of ramoplanin over the range 10–5000 ng/mL. The assay determines ramoplanin at the same lower limit of quantification as conventional liquid sample methods. Dried blood spot analysis provides an approach for quantification of peptide therapeutics and delivers significant benefits for sample collection and handling and also sample cleanup over conventional plasma and serum assays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
For redox enzymes, the technique called protein film voltammetry makes it possible to determine the entire profile of activity against driving force by having the enzyme exchanging directly electrons with the rotating-disc electrode onto which it is adsorbed. Both the potential location of the catalytic response and its detailed shape report on the sequence of catalytic events, electron transfers and chemical steps, but the models that have been used so far to decipher this signal lack generality. For example, it was often proposed that substrate binding to multiple redox states of the active site may explain that turnover is greater in a certain window of electrode potential, but no fully analytical treatment has been given. Here, we derive (i) the general current equation for the case of reversible substrate binding to any redox states of a two-electron active site (as exemplified by flavins and Mo cofactors), (ii) the quantitative conditions for an extremum in activity to occur, and (iii) the expressions from which the substrate-concentration dependence of the catalytic potential can be interpreted to learn about the kinetics of substrate binding and how this affects the reduction potential of the active site. Not only does slow substrate binding and release make the catalytic wave shape highly complex, but we also show that it can have important consequences which will escape detection in traditional experiments: the position of the wave (this is the driving force that is required to elicit catalysis) departs from the reduction potential of the active site even at the lowest substrate concentration, and this deviation may be large if substrate binding is irreversible. This occurs in the reductive half-cycle of periplasmic nitrate reductase where irreversibility lowers the driving force required to reduce the active site under turnover conditions and favors intramolecular electron transfer from the proximal [4Fe4S]+ cluster to the active site Mo(V).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号