首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been applied for the detection of volatile aroma compounds emanated from thymus medicinal plants such as T. quinquecostotus (Jeju and Mt. Gaya in South Korea), T. quinquecostotus var. japonica (Ulreung island in South Korea), T. mongolicus (Northeastern Asia), and T. serpyllum (Europe). The GC/SAW involving the fragrance pattern analysis provides a novel analytical method with a very fast separation and characterization of aromas caused by the delicate difference of chemical composition according to botanical and geographical origin. On the comparison of experiments, the characteristic components and analytical tendency for air-dried thymus species detected by GC/SAW appear to be quite similar to those obtained by headspace solid-phase microextraction (HS-SPME)-GC-MS, but the abundance ratios between these two methods are different. In addition to that, the discrimination of various thymus species by using VaporPrint image based on GC/SAW provides a quite reliable result. On the basis of principal component analysis (PCA) results, the ability for classification among species of completely different chemotypes by HS-SPME-GC-MS is good enough, but the classification of same chemotypes species which are from different geographical origin in same country, original species and its variety, an air-drying term for 13 days and 16 months appear much lower than GC/SAW. Interestingly, the present experiment reveals that the air-drying term influences the aroma composition: the concentration of the pharmacologically active species, monoterpene phenol (thymol), reaches its highest concentrations after it was dried for 5 days or 13 days, which is much higher than in fresh or over-dried for a long times.  相似文献   

2.
In this study, a simple and solvent-free method was developed for determination of the volatile compounds from fresh flowers of Syringa oblata using headspace solid-phase microextraction and gas chromatography-mass spectrometry. The SPME parameters were studied, the optimum conditions of a 65 μm polydimethylsiloxan/divinylbenezene (PDMS/DVB), extraction temperature of 25 °C and extraction time of 30 min were obtained and applied to extraction of the volatile compounds emitted from fresh flowers of S. oblata. The volatile compounds released from fresh flowers of S. oblata were separated and identified by GC-MS. Lilac aldehyde A, lilac aldehyde B, lilac aldehyde C, lilac aldehyde D, lilac alcohol A, lilac alcohol B, lilac alcohol C, lilac alcohol D, α-pinene, sabinene, β-pinene, myrcene, d-limonene, eucalyptol, cis-ocimene, benzaldehyde, terpinolene, linalool, benzene acetaldehyde, α-terpineol, p-methoxyanisole, p-anisaldehyde, (Z,E)-α-farnesene and (E,E)-α-farnesene were the most abundant volatiles released from fresh flowers of S. oblata var. alba. The relative contents of main volatile fragrance were found to be different in emissions from two varieties of S. oblata flowers (white or purple in color). The four isomers of lilac alcohol and four isomer lilac aldehyde were the characteristic components of the scent of fresh flowers of S. oblata. The main volatile fragrance from fresh flowers of S. oblata var. alba in different florescence ((A) flower buds; (B) at the early stage of flower blooming; (C) during the flower blooming; (D) at the end of flower blooming; (E) senescence) were studied in this paper. The results demonstrated that headspace SPME-GC-MS is a simple, rapid and solvent-free method suitable for analysis of volatile compounds emitted from fresh flowers of S. oblata in different florescence.  相似文献   

3.
《印度化学会志》2021,98(11):100178
The extraction is a simple process and it is widely used to extract the fragrances in fragrance industries from essential oils. There are number of compounds (i.e. flowers, oils, leaves etc.) from which we can prepare the fragrance by extracting the essential oils from them. In this work, we have prepared the fragrance from the essential oils by the liquid-liquid extraction process, where the essential oil presented as the concentrated hydrophobic liquid containing volatile aroma compounds. We used the combination of Gas chromatography and Mass spectrometry (GC/MS) characterization techniques to make our product more useful, convenient and compitative with the other fragrance available in the market. This study would be helpful to understand the preparation of the fragrance from the concentrated hydrophobic liquid type essential oils which contains volatile aroma compounds by using a significant liquid-liquid extraction process.  相似文献   

4.
A novel Headspace Solid Phase Microextraction (HS‐SPME) protocol is proposed for the analysis of floral scent. Volatile compounds emitted from the flower are collected on a Carboxen/PDMS fiber for 1 hour, transferred to the GC, and analyzed by GC/MS. The method completely eliminates the use of organic solvents, does not require special instrumentation, and may readily be performed in the field without access to mains electricity and other energy supplies. The method is robust, sensitive, and reduces the sampling stress on the investigated plant. Since enzymatic reactions in living flowers may cause changes in the composition of emitted fragrance, dried rosemary (Rosmarinus officinalis L.) was used as a stable standard for the method development and optimization. In addition, grape wine was also suggested as homogeneous, bio‐compatible, and relatively stable standard of pronounced and typical scent for the same purpose. The optimized method was used for the comparative investigation of the fragrances emitted by two different species – Lathyrus vernus (L.) and Orchis pallens (L.). Several monoterpenes (C10 compounds) were found as the main fragrance components of lathyrus, while sesquiterpenes (C15 compounds) were typical for the orchid.  相似文献   

5.
Future understanding of differences in the composition and sensory attributes of wines require improved analytical methods which allow the monitoring of a large number of volatiles including those present at low concentrations. This study presents the optimization and application of a headspace solid-phase microextraction (HS-SPME) method for analysis of wine volatiles by comprehensive two-dimensional gas chromatography (GC×GC) time-of-flight mass spectrometry (TOFMS). This study demonstrates an important advancement in wine volatile analysis as the method allows for the simultaneous analysis of a significantly larger number of compounds found in the wine headspace compared to other current single dimensional GC-MS methodologies. The methodology allowed for the simultaneous analysis of over 350 different tentatively identified volatile and semi-volatile compounds found in the wine headspace. These included potent aroma compound classes such as monoterpenes, norisoprenoids, sesquiterpenes, and alkyl-methoxypyrazines which have been documented to contribute to wine aroma. It is intended that wine aroma research and wine sensory research will utilize this non-targeted method to assess compositional differences in the wine volatile profile.  相似文献   

6.
Truffles are underground edible fungi that grow symbiotically with plant roots. They have been globally considered as one of the most expensive foods because of their rarity, unique aroma, and high nutritional value as antioxidant, anti-inflammatory, antiviral, hepatoprotective, anti-mutagenic, antituberculoid immunomodulatory, antitumor, antimicrobial, and aphrodisiac. The unique flavor and fragrance of truffles is one of the main reasons to get worldwide attraction as a food product. So, the aim of this review was to summarize the relevant literature with particular attention to the active aroma components as well as the various sample preparation and analytical techniques used to identify them. The major analytical methods used for the determination of volatile organic compounds (VOC) in truffles are gas chromatography (GC), proton-transfer-reaction mass spectrometry (PTR-MS), and electronic nose sensing (EN). In addition, factors influencing truffle aroma are also highlighted. For this reason, this review can be considered a good reference for research concerning aroma profiles of different species of truffles to deepen the knowledge about a complex odor of various truffles.  相似文献   

7.
A novel in-needle microextraction (INME) for headspace sampling evaluated in this study has significantly higher extraction speed and the practical merits of a durable stainless steel needle to overcome some exposed fiber related drawbacks. A prototype stainless steel needle (Hamilton 90022, 22 gauge bevel tip, 51 mm length) packed with polydimethylsiloxane (PDMS, 0.413 mm O.D., 10 mm length) having a micro-bore (200 μm I.D.) tunnel was prepared as a new INME device. This needle with a barrel and a plunger is then inserted and exposed into the headspace over the sample. Headspace sampling can be speeded up by an automatic reciprocating pump. The extraction parameters have been optimized along with the validation of method performance. The methodology has been applied for the analysis of volatile aroma active components emitted from eight kinds of citrus essential oils by GC-FID or GC/MS. The proposed method showed excellent linearity, reproducibility, and low detection limit. This solventless technique is simple to operate, inexpensive to fabricate, and provides a facile means for collecting and introducing volatile aroma active components of essential oils.  相似文献   

8.
Previous publications investigated different data treatment strategies for quantification of volatile suspected allergens by GC/MS. This publication presents the validation results obtained on "ready to inject" samples under reproducibility conditions following inter-laboratory ring-testing. The approach is based on the monitoring of three selected ions per analyte using two different GC capillary columns. To aid the analysts a decisional tree is used for guidance during the interpretation of the analytical results. The method is evaluated using a fragrance oil concentrate spiked with all suspected allergens to mimic the difficulty of a real sample extract or perfume oil. At the concentrations of 10 and 100mg/kg, imposed by Directive 76/768/EEC for labeling of leave-on and rinse-off cosmetics, the mean bias is +14% and -4%, respectively. The method is linear for all analytes, and the prediction intervals for each analyte have been determined. To speed up the analyst's task, an automated data treatment is also proposed. The method mean bias is slightly shifted towards negative values, but the method prediction intervals are close to that resulting from the decisional tree.  相似文献   

9.
焦龙  王媛  邰文亮  刘焕焕  薛志伟  王彦昭 《色谱》2020,38(5):600-605
采用比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)方法,研究了香水百合中38种香气成分分子结构与气相色谱保留指数值之间的定量构效关系。用外部测试集验证法和留一交叉验证法对模型的稳健性和预测能力进行了检验,并通过CoMSIA模型和CoMFA模型的分子场三维等势图研究了这些化合物分子中不同化学结构对保留指数值的影响。检验结果表明,所建立的CoMSIA模型和CoMFA模型都具有较好的稳健性和预测能力,且能够合理解释结构对保留指数值的影响,可应用于对香水百合香气成分的色谱保留指数值的预测。与CoMFA模型相比,CoMSIA模型的预测准确度更高,在香水百合香气成分的色谱定量构效关系研究中,显然有更好的应用前景。  相似文献   

10.
茶叶香味扫描和挥发性化学成分分析   总被引:11,自引:0,他引:11  
为区分不同茶叶的香味,利用电子扫描仪对铁观音、兰贵人、玉针、碧螺春和云雾茶等5种茶叶进行了香味扫描,确定了电子鼻在茶叶香味辨别中的作用。采用固相微萃取.气相色谱/质谱联用法对这5种茶叶样品中的挥发性化学成分进行了定性和定量分析,分别鉴定出40、40、35、16和13种化合物。在鉴定出的化学成分中,乙酸、大茴香醚、十六烷、咖啡因、十六酸和双酚A是5种茶叶样品中所共有的化学成分,每种茶叶样品中又都含有一些特有的化学成分。最后对香味扫描结果和挥发性化学成分分析结果进行了分析,研究了挥发性化学成分组成和含量上的差别,对茶叶样品数据点在香味分析三维图中位置的影响。  相似文献   

11.
The coupling of headspace solid-phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography (GC x GC) was shown to be a powerful technique for the rapid sampling and analysis of volatile oils in complex herbal materials. When compared to one-dimensional (1-D) GC, the improved analytical capabilities of GC x GC in terms of increased detection sensitivity and separation power were demonstrated by using HS-SPME/GC x GC for the chemical profiling (fingerprinting) of essential/volatile oils contained in herbal materials of increasing analytical complexity. More than 20 marker compounds belonging to Panax quinquefolius (American ginseng) can be observed within the 2-D contour plots of ginseng itself, a mixture of ginseng and another important herb (P. quinquefolius/Radix angelicae sinensis), as well as a mixture of ginseng and three other herbs (P. quinquefolius /R. angelicae sinensis/R. astragali/R. rehmanniae preparata). Such analytical capabilities should be important towards the authentication and quality control of herbal products, which are receiving increasing attention as alternative medicines worldwide. In particular, the presence of Panax in the herb formulation could be readily identified through its specific peak pattern in the 2-D GC x GC plot.  相似文献   

12.
A key feature of rice acceptance by consumers is closely related to its aroma. A few decades of research on rice aroma indicated associated difficulties which arise from its complicated volatile composition. Our investigation seeks to resolve this highly complicated aroma profile using an experimental design for headspace solid-phase microextraction GC–MS. The Plackett–Burman methodology was used as a factor screening method for the headspace solid-phase microextraction procedure and GC–MS analysis, and a central composite design was implemented as an optimization methodology for both steps. Optimization of the extraction procedure and GC–MS analysis leads to a highly resolved rice aroma profile resulting in 66 new constituents. A total of 123 constituents were identified by implementing the procedure on Champa rice from the south of Iran.  相似文献   

13.
The investigation of odorants is not an easy task, which needs to be undertaken in the context of fit-for-purpose quality systems. To date, great attention has been paid to determination of the volatile fractions of odorants, since they are responsible for the attributes of global flavor [i.e. a combination of olfactory (aroma) and gustatory (taste) sensations produced by chemicals]. This kind of determination can be carried out by analytical techniques [e.g., gas chromatography (GC) combined with mass spectrometry and/or olfactometric GC]. Methods complementary to GC analysis are available, allowing assessment of the olfactory impact by an electronic nose (e-nose) or a panel of selected individuals. Also, we consider some innovative analytical techniques to study the effects of odorants in food during consumption.  相似文献   

14.
A total of 95 volatile compounds from the essential oil in buds of Syringa oblata Lindl (lilac) were identified by gas chromatography-mass spectrometry (GC-MS) combined with heuristic evolving latent projections (HELP) and moving subwindow searching (MSS). The identified compounds are mainly aliphatic, terpenes and aromatic compounds. Their temperature-programmed retention indices (PTRIs) on HP-5MS and DB-35MS at three heating rates of 2, 4 and 6 degrees C/min from 80 to 290 degrees C were obtained, which showed that aliphatic compounds give nearly constant PTRIs and PTRIs of terpenoids do not vary much at different heating rates. But PTRIs of aromatic compounds exhibit relatively large temperature dependence. PTRIs vary much more on DB-35MS than those on HP-5MS according to the compound types. In general, differences of PTRIs between the two columns increase from aliphatic compounds to terpenoids to polycyclic aromatic compounds. The PTRIs in different heating rates were used as cross-references in the identification of components in the essential oil. When they were used in analysis of essential oil from flowers of lilac, good results were obtained. These PTRIs would be a part of our PTRI database being constructed on components from plant essential oils. The results also showed that efficiency and reliability were improved greatly when chemometric method and PTRIs were used as assistants of GC-MS in identification of chemical components in plant essential oils.  相似文献   

15.
Panax notoginseng is a medicinal plant in China, the flowers of which have high medicinal value. To study the differences in the floral fragrance compounds of P. notoginseng flowers (bionic wild cultivation) from the forests of Yunnan Province, the floral fragrance compounds from four varieties of P. notoginseng flowers (four-forked seven leaves, three-forked seven leaves, four-forked five–seven leaves, and three-forked five–six leaves) were compared and analyzed via headspace solid phase microextraction combined with gas chromatography–mass spectrometry methods. A total of 53 floral fragrance compounds from the P. notoginseng flowers were divided into eight categories, mainly consisting of terpenes, alkynes, aromatic hydrocarbons, and alcohols. Moreover, high contents of 3-carene, germacrene D, (−)-α-gurjunene, valencene, (+)-γ-gurjunene, menogene, and aromandendrene were identified from the flowers of different P. notoginseng varieties. Interestingly, floral fragrance compounds such as 3-carene, valencene, aromandendrene, menogene, and (+)-γ-gurjunene were first reported in the flowers of P. notoginseng. Cluster analysis showed that P. notoginseng with four-forked and three-forked leaves clustered into two subgroups, respectively. In addition, principal component analysis showed that (+)-γ-gurjunene, (+)-calarene, copaene, 1,8,12-bisabolatriene, γ-elemene, (–)-aristolene, caryophyllene, 3-carenes, and 2,6-dimethyl-1,3,6-heptatriene can be used to distinguish the floral fragrance components of four P. notoginseng flower species. This study provides a theoretical basis for elucidating the floral fragrance compounds emitted from the flowers of different P. notoginseng varieties in an agroforestry system.  相似文献   

16.
Capillary GC/sensory analysis was used to judge if dynamic headspace on sliced pulp and on intact fruit, and solvent extraction could collect the “character impact” and the “contributory” aroma compounds in peaches. Capillary GC/sensory data showed that the headspace techniques selectively recovered the “contributory” volatile compounds, which are strictly related to the characteristic odor of the various peach cultivars, whereas solvent extraction better quantified the “character impact” compounds (lactones).  相似文献   

17.
This article describes the optimisation and validation of an analytical method for the determination of volatile polyfluorinated alkyl substances (PFAS) in environmental air samples. Airborne fluorinated telomer alcohols (FTOHs) as well as fluorinated sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) were enriched on glass-fibre filters (GFFs), polyurethane foams (PUFs) and XAD-2 resin by means of high-volume air samplers. Sensitive and selective determination was performed using gas chromatography/chemical ionisation–mass spectrometry (GC/CI–MS). Five mass-labelled internal standard (IS) compounds were applied to ensure the accuracy of the analytical results. No major blank problems were encountered. Recovery experiments were performed, showing losses of the most volatile compounds during extraction and extract concentration as well as strong signal enhancement for FOSEs due to matrix effects. Breakthrough experiments revealed losses of the most volatile FTOHs during sampling, while FOSAs/FOSEs were quantitatively retained. Both analyte losses and matrix effects could be remediated by application of adequate mass-labelled IS. Method quantification limits (MQLs) of the optimised method ranged from 0.2 to 2.5 pg/m3 for individual target compounds. As part of the method validation, an interlaboratory comparison of instrumental quantification methods was conducted. The applicability of the method was demonstrated by means of environmental air samples from an urban and a rural location in Northern Germany. Figure High-volume air sampling of volatile polyfluorinated alkyl substances using glass fibre filters and PUF/XAD-2 cartridges at a background monitoring site (Waldhof, Germany)  相似文献   

18.
The aim of this experiment is to develop a rapid, simplified, direct gas chromatographic (GC) method for the analysis of volatile flavor compounds in yogurt combining a headspace with constant heating temperature and GC with a mass spectrometric detect ion. Repeatability of the method is assessed. The relative standard deviation for individual flavor compounds range from 3.5% for acetaldehyde to 8.4% for acetone, with a total mean value of 52.4 +/- 2.2 mg/kg for all of the studied aroma components. Recovery for individual flavor compounds range from 63.7% for acetone to 82.4% for acetic acid.  相似文献   

19.
A convenient analytical method to quantify volatile organic compounds (VOCs) emitted from various building materials has not been addressed yet. This work presents a new and rapid automated method using SPME combined with GC/MS. Methyl benzoate - as a metabolic biomarker for mold growth-was used to indicate VOCs and to determine and assess mold growth on damp samples. Gypsum board and wall-board paper were used as examples of common indoor building materials. Optimized extraction conditions were carried out manually, using a GC/flame ionization detector. Moldy samples were analyzed using an automated SPME-GC/MS analysis under optimized conditions. The amount of methyl benzoate emitted from the studied samples ranged from 32 to 46 ppb, where the density of the fungal biomass was found to be 8 x 10(4) cells/mL. A relationship between the amount of fungal biomass and the emitted concentration of methyl benzoate was found and assessed based upon cultured mold samples taken from indoor building sites. The analytical method shows promise for the compound methyl benzoate, which can easily be identified at low detection limits (LOD = 3 ppb) and good linearity (>0.988), and its extraction and detection can be accomplished cleanly by current extraction techniques. Results suggest that this method with easy sample preparation can be used for quantitation and, of importance, minimal matrix effects are observed.  相似文献   

20.
This paper presents the results of a study that examined the impact of grape variety on the volatile aroma compounds and sensory properties of standard and Muscat grape brandy produced in the Podgorica sub-region (Montenegro) in vintages 2011, 2012, and 2013. The brandies were prepared by the distillation of crushed grapes, from the autochthonous varieties of Vranac and Kratošija, and Muscat grapes, in a traditional copper alembic, under the same conditions. The gas chromatographic-mass spectrometric (GC/MS) method of 82 volatile aroma compounds that belong to the group (alcohols, volatile acids, volatile esters, terpenes, volatile aldehydes, acetals, ethers, ketones, and alkanes) and an evaluation of the sensory properties of brandies were carried out to determine the typical characteristics of the examined brandies. Alcohols, fatty acid esters, and terpene compound contents were significantly more abundant in all Muscat grape brandies compared to the brandies from the Vranac and Kratošija wine varieties (Standard brandy). Research results revealed that variety had a significant impact on the volatile aroma compound and sensory properties of brandy. The varietal effect was also confirmed, by multivariate analysis, based on the aroma volatile composition, which showed a grouping by type of grape brandy (varietal origin). Sensory analyses showed that all the brandies belonged to the category of high-quality brandies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号