首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of immobilized glucose oxidase (GOD) by the complexes of diethylaminoethyl cellulose(DEAEC) with different polymers, such as polymethylacrylic acid (PMAA), polyacrylic acid (PAA), polystyrene sulfonic acid (PSSA), polyvinylaleohol (PVA), polyethylene oxide (PEO) and styrene-maleic acid copolymer (PSMA) were investigated. The activity of immobilized GOD was obviously influenced by the component of the DEAEC complexes. The relative activity of the immobilized GOD reached to maximum and over 90% of the native GOD. when the DEAEC-PMAA DEAEC-PAA complexes were used as a carrier with the molar ratio of DEAEC and polyacid of about one. Michaelis constants (Km) of the immobilized enzymes of DEAEC-GOD-PMAA and DEAEC-GOD-PAA were determined to be 1.25 and 1.00, respectively. Moreover, the immobilized GOD has a good storage stability and cyclic life.  相似文献   

2.
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one.  相似文献   

3.
Dried baker’s yeast cells were immobilized on a chitosan film, which is a natural polymer. Prepared chitosan films were treated with glutaraldehyde to facilitate the immobilization of the cells. The effects of the amount of glutaraldehyde, incubation time, pH, and temperature on immobilization were investigated. The amount of glutaraldehyde was chosen to be 0.01% (weight). The highest amount of yeast immobilization was obtained with 5 h incubation. It was determined that optimum temperature for immobilization is 25°C, and the optimum pH for immobilization is 6. Immobilized cells were allowed to stand for 3 d in distilled water and buffer solution (pH 6) to investigate the desorption, but no desorption was found. The maximum immobilization capacities were found to be 90 μg protein cm−2 film in optimum conditions.  相似文献   

4.
酶法合成头孢克罗   总被引:3,自引:0,他引:3  
Enzymatic synthesis of cefaclor from 7-aminodesacetoxymethyl-3-chlorocephalosporainc acid(6-ACCA) and phenylglycine derivatives using penicillin G acylase was studied .Many factors that affect the conversion of 7-ACCA to cefaclor were examined.The immobilized enzyme from Bacillis megaterium gave a better catalytic properties and the higher conversion was obtained using phenylglycine methyl ester(PGME) as acyl donor.And the external mass transfer limitation could be eliminated when the stirring rate was more than 150r/min.Low temperature was beneficial for the synthesis and the results showed that the synthetase activity was hardly influenced by temperature while the amidase activity was affected greatly by temperature.The optimum reaction conditions were determined at pH 6.5 and 10℃,respectively.The best 7-ACCA conversion of 56% was achieved when the intial concentration of 7-ACCA and PGME was at 50 mM and 150mM,respectively.  相似文献   

5.
The adsorption behavior of benzoic acid onto a water-compatible hypercrosslinked polymeric adsorbent NJ-8 wascompared with that onto macroporous Amberlite XAN-4. This paper focuses on the static equilibrium adsorption behaviors,the adsorption thermodynamics and the column dynamic adsorption profiles. Five isotherm models are used to fit the results.This shows that the Freundlich equation can give a perfect fit. The specific surface area of NJ-8 is about as high as that ofAmberlite XAD-4, but the adsorbing capacity for benzoic acid on NJ-8 is about 14.9%-64.8% higher than that on AmberliteXAD-4, which is attributed to its microporous mechanism and partial polarity. The negative values of the adsorptionenthalpy are indicative of an exothermic process. Both enthalpy and free energy changes of adsorption manifest a physicalsorption process. The negative values of the adsorption entropy indicate that adsorption is well consistent with the restrictedmobilities and the configurations of the adsorbed molecules on the surface of the studied adsorbents with superficialheterogeneity. Both adsorbents were used in mini-column experiments to demonstrate the higher breakthrough adsorbing capacity of the hypercrosslinked polymeric adsorbent NJ-8 to benzoic acid, as compared with that of Amberlite XAD-4.  相似文献   

6.
2,2,6,6-Tetramethyl-4-(bis-ethyteneimino) triazinamino-piperidine-1-oxyl was used as the spin label. In ESR spectra of the product obtained (SL-DNA), the strongly immobilized peak greatly prevailed over the weakly immobilized component and a significant difference existed between their microwave saturation characteristics. The spin labeling reaction was investigated in some details. With the aid of beat denaturation (100℃, 15 min) of SL-DNA in conjunction with acid degradation (pH 1.5, 37℃, 23h), the quantity of labels bound to DNA was determined. Namely, the number of labels bound to 1000 nucleotides was found to be 4.0—12.6. The structural transition temperature of SL-DNA attained from variable temperature measurements was about 63℃ and a rise in this temperature was observed with increasing salt concentration.  相似文献   

7.
The imprinted polymeric film was synthesized on the glass-carbon electrodes dlrectly. The response to the template molecule-dopamine and other molecules with similar structure was measured by cyclic voltammetry. The response of dopamine on imprinted electrode was much higher than that of other molecules,because of the existing of micro-cavities in polymeric rdm fitting with the size and shape of dopamine in the imprinted polymer.Experimental results showed that dopamlne can be enriched by the imprinted film, therefore increasing the sensitivity of the sensor. The imprinted film could also efface the interference of ascorbic acid, indicating that dopamine can be determined with a large excess of ascorbic acid.  相似文献   

8.
The effects of irradiation on the polyetherketone with cardo group (PEK-C) were studied. It was found that PEK-C can be crosslinked by irradiation under vacuum, while degradation reaction occurred in PEK-C at room temperature in the presence of air. Moreover. it was also found that Ts value of the crosslinked PEK-C at high temperature is higher than that at room temperature in the case of the same gel content, whose value is about 8℃higher than that of unirradiated PEK-C. The gelation dose of PEK-C at 300℃under vacuum is 1.5×10~4 Gy, which is about hundred times smaller than that at room temperature.  相似文献   

9.
葡萄糖氧化酶在活性炭上的固定及直接电化学   总被引:2,自引:0,他引:2  
The glucose oxidase (GOD) immobilized onto the surface of activated carbon powders at the glassy carbon electrode (GOD-C/GC) could undergo the quasi-reversible, direct electrochemical reaction. Its formal redox potential, E0′, is almost independent on the scan rates. The average value of E0′ is (-0.467 ± 0.002) V (vs SCE) in the pH 6.8 phosphate buffer solution. Its apparent heterogeneous electron transfer rate constant (ks) is (1.18 ± 0.59) s-1, which is much higher than that reported previously. The dependence of E0′ on the pH of the buffer solution indicated that the direct electrochemical reaction of the immobilized GOD is a two-electron transfer reaction process coupled with two-proton transfer. The further experimental results demonstrated that the immobilized GOD retained its bioelectrocatalytic activity to the oxidation of β-D(+) glucose.  相似文献   

10.
Styrene-acrylic acid copolymer (SAAC)-supported iron complex (SAAC·Fe)was characterized and the effect of the characteristic parameters on the catalytic activity of the complex was investigated. IR spectrum suggested that the complex SAAC·Fe possesses a structure of(C)and the Fe-O bond is higher in covalency.The complex SAAC·Fe with the structure of(C)shoved a higher catalytic activity in butadiene polymerization. When Fe/-COOH molar ratio in SAAC·Fe was about 0.2 the complex gave optimum catalytic activity. The catalytic activity of SAAC·Fe with the higher content of long sequence of acrylic acid units was low. When the content of the short sequence of acrylic acid units was predominant and at the same time the content of the short sequence was approximately equal to that of the long sequence for stryrene, the activity of the complex was high.  相似文献   

11.
The preparation,characterization,and application of silica-coated magnetic nanoparticles for papain immobilization is reported.Papain was covalently attached onto the(3-chloropropyl) trimethoxysilane-modified silica-coated magnetic nanoparticles. The enzyme-immobilized nanoparticles were characterized by Fourier transform infrared spectroscopy,X-ray powder diffraction,scanning electron microscopy,and vibrating sample magnetometry techniques.Response surface methodology combined with statistical analyses using Minitab were employed to evaluate optimum operating conditions to immobilize papain on the magnetic nanoparticles.The optimum conditions were: temperature = 27.3℃,pH of the enzyme solution = 7.1,concentration of papain = 3.3 mg/mL,and immobilization time = 10 h.Compared with the free papain,the immobilized papain displayed enhanced enzyme activity,better tolerance to variations in the medium pH and temperature,improved storage stability,and good reusability.Both the free and immobilized enzymes were effective for the clarification of pomegranate juice.  相似文献   

12.
叶霖 《高分子科学》2014,32(12):1714-1723
The cationic folic acid(CFA) was prepared by introducing triethylenetetramine into folic acid with EDCI/NHS and characterized by IR, NMR and mass spectra. It was found that approximately one of two carboxyls in the folic acid molecule was substituted to form CFA. The conversion of γ-carboxyl is found to be 59% higher than 30% of γ-carboxyl. The CFA and doxorubicin hydrochloride can be loaded on the ionic shell of PTX-encapsulated micelle to form CFA loaded binary drug carrier via static interaction in aqueous solutions. The successful loading was demonstrated by zeta potential measurement and the drug load amount(DLA) of CFA was measured by HPLC. In vitro cytotoxicity results revealed the CFA drug carrier showed higher cytotoxicity to cancer cell MDA-MB-321 than the binary drug carrier without CFA and the positive control, while it showed lower cytotoxicity to normal cell HUVEC than the positive control, and similar cytotoxicity with the binary drug carrier without CFA. These results as well as confocal laser scanning microscopy observation indicate the synthesized CFA drug carrier possesses active tumor-targeting property.  相似文献   

13.
Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with different compositions and configurations, it is proposed that acetic acid is predominantly produced via an intermediate of acetaldehyde. This can be easily confirmed by comparing the product distributions in the integral and the differential reactors. The active sites for acetic acid formation are considered to exist mainly at the boundaries between the H4SiW12O40 and the Pd particles. The Pd-based catalysts reduced by H2/N2 have higher activities than those reduced by hydrazine, as explained by the degree of Pd dispersion obtained from the characteristics of hydrogen chemical adsorption. It was found that the Pd-Se-SiW12/SiO2 catalyst with selenium tetrachloride as a precursor was more active than that with potassium selenite, and that the acetic acid yield can be greatly increased by adding a s  相似文献   

14.
Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.  相似文献   

15.
Chiral Mn Ⅲ (salen) (Jacobsen’s catalyst) was axially immobilized onto a new type of organic polymer-inorganic hybrid materialzirconium poly(styrene-isopropenyl phosphonate)-phosphate(ZPS-IPPA) with different linkage lengths and evaluated as catalysts for the epoxidation of unfunctionalized olefins. The results demonstrated that the prepared catalysts exhibited moderate to good activity and enantioselectivity in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, the immobilized catalysts were relatively stable and could be conveniently separated from the reaction system by simple precipitation in hexane. Moreover, higher enantioselectivity was obtained with catalyst 2c than that of homogeneous counterpart catalyzed even after eight times. The excellent recycling of the catalyst was attributed to its structure feature of ZPS-IPPA which is different from either pure polystyrene or pure zirconium phosphates.  相似文献   

16.
From the tryptic digests of phosphorylated snake muscle FruP_(2ase), a phosphoryl peptide has beenisolated, its amino acid sequence was Gly-Ala-Gly-Ser-Arg and the phosphorylation site was consideredto be on the serine residue. Effectors of the enzyme such as FruP_2, F6P and AMP did not affect thephosphorylation. The effect of pH on phosphorylation was consistent with that on the activity of theenzyme. The activity of phosphorylated enzyme was slightly lower than that of the native enzyme, thisdifference in activities between the two forms of the enzyme increased with decreasing the substrateconcentration. Results further support that a phosphorylated intermediate is involved in the catalytic reac-tion of FruP_(2ase).  相似文献   

17.
The synthesis of formic acid from carbon dioxide and hydrogen using a silica immobilized ruthenium catalyst as precursor has been studied in different reaction conditions. The results revealed that the TOF (turn over frequency) of HCOOH achieved 1481.5 h^-1 on immobilized ruthenium catalyst near the critical pressure point of CO2 with H2 pressure of 4.0 MPa, reaction temperature of 80℃ and PPh3/Ru molar ratio of 6:1. The reaction activity of immobilized catalyst was higher than that of homogeneous catalyst, and the immobilized catalyst also offered the practical advantages such as easy separation and reuse.  相似文献   

18.
《天然气化学杂志》2012,(3):314-318
In this work,the amination of sulfonated polystyrene resin with alkyl secondary amine is investigated.The catalytic activities of the modified resins are determined through the hydration of 1-butene.The optimum chain length and the best range of amination rate are determined.It is found that the single-pass conversion of 1-butene was raised 2% on average,and the relative activity was increased over 30% after modification.A hypothesis about the enhancement of catalytic activities by the inclusion of alkyl chain to wrap up the butene molecule is proposed.  相似文献   

19.
Wet air oxidation is an effective method to deal with highly concentrated nondegradable emulsification wastewater which contains non-ionic surfactants. This article illustrates our investigation on dynamic characteristics of wet air oxidation of typical non-ionic surfactants like polyether, phenol ether and widely used alcohol ether. The experimental results indicated that the oxidation rate of polyether, phenol ether and alcohol ether obviously ascended as the temperature rose. A good oxidation effect was available at 240℃. The TOC removal rate could reach 88.0%, 94% and 91.5%, after 125 min reaction. Alcohol ether was prone to an easier oxidation compared with polyether and phenol ether when the temperature was 220℃ or below. The oxidation rate of alcohol ether was higher than that of polyether at 160℃, while the oxidation rate of polyether was higher than that of phenol ether between 180℃ and 220℃. During the later period of the reaction at 240℃, the rate of phenol ether was higher than that of alcohol ether, which was still higher than that of polyether. Partitioned first order kinetics model analy-sis showed that the apparent activation energy of alcohol ether was lower than that of both polyether and phenol ether in the leading stage and lagging stage, and it was easy to acquire a higher oxidation rate for alcohol ether at low temperature. Three parameter general dynamics model analyses showed that the reason why the oxidation rate of polyether was lower than that of alcohol ether was that the oxidation of polyether was more apt to be converted to intermediate production than that of alcohol ether, whereas between 200℃ and 220℃, the direct oxidation rate of polyether and the oxidation rate of intermediate product were obviously lower than that of alcohol ether. The apparent activation energy of direct and indirect oxidation of polyether was 43.37 and 60.45 kJ?mol?1, respectively, while the corre-sponding apparent activation energy of alcohol was 38.74 and 58.09 kJ·mol?1, respectively.  相似文献   

20.
Molecular design of trypsin mutants towards higher substrate specificity for arginine or ly-sine type substrates was studied. The difference in side chain pKa of arginine and lysine was utilized in redesigning trypsin. If the enzyme could react effectively at a pH higher than lysine's pKa but lower than that of arginine, it would react more selectively with arginine-type substrates, since in that pH range, the side chain of arginie remain protonated, while that of lysine is deprotonated. For trypsin. the change of histidine (57)'s pKa reflects the shift in reaction optimum pH. Electrostatic calculations showed that when surface positive residues were mutated into neutral or negative ones, the pKa of histidine(57) would be raised and those surface charges within a cone of 70 degree around histidine(57) have strong influence on its pKa. Several sites were suggested in rat trypsin which might serve as potential mutation locations to make trypsin active at a higher pH, thus more selective towards arginine t  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号