首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
In the present paper, we have theoretically calculated the non linear elastic constants of single crystalline Ni NWs at very broad temperature range 20–300 K validating simple interaction potential model. The temperature dependent ultrasonic attenuation and other related properties are determined using their second and third order elastic constants (SOECs/TOECs). Where possible, the results are compared with experiments from literature. There is a correlation between the thermal conductivity and ultrasonic attenuation in the temperature range 100–300 K. Also, a correlation between the resistivity and ultrasonic attenuation in the temperature range 40–100 K has been established validating the theoretical approach.  相似文献   

2.
Temperature dependent physical effects of ultrasonic wave viz. ultrasonic attenuation due to interaction of sound wave and thermal phonons, thermoelastic loss and dislocation damping have been studied in beryllium chalcogenides (BeX, X = S, Se and Te) in the temperature range 50-500 K, along three crystallographic directions of propagation viz. [1 0 0], [1 1 0] and [1 1 1] for longitudinal and shear modes of propagation. Second and third order elastic moduli have been obtained using electrostatic and Born repulsive potentials and taking hardness parameter and nearest neighbour distance as input data. Gruneisen numbers, acoustic coupling constants and drag coefficients have been evaluated for longitudinal and shear waves along different directions of propagation and polarization. The results have been discussed and compared with the available data. It has been found that the temperature dependence of ultrasonic attenuation follows the temperature variation of diffusion coefficient and is mainly dominated by phonon-phonon interaction.  相似文献   

3.
Temperature dependent ultrasonic properties of aluminium nitride   总被引:1,自引:0,他引:1  
Hexagonal wurtzite structured aluminium nitride has been characterized by the theoretical calculation of ultrasonic attenuation, ultrasonic velocity, higher order elastic constants, thermal relaxation time, acoustic coupling constants and other related parameters in temperature range 200-800 K for wave propagation along the unique axis of the crystal. Higher order elastic constants of AlN at different temperatures are calculated using Lennard-Jones potential for the determination of ultrasonic attenuation. A decrease in ultrasonic velocity with temperature has been predicted, which is caused by reduction in higher order elastic constants with temperature. The temperature dependent ultrasonic properties have been discussed in correlation with higher order elastic constants, thermal relaxation time, thermal conductivity, acoustic coupling constants and thermal energy density. Anomalous behaviour of the attenuation is found at 400 K. On the basis of attenuation, the ductility and performance of AlN have been studied.  相似文献   

4.
We investigate the phonon thermal transport properties in InAs nanowires with different size and growth directions by using nonequilibrium molecular dynamics methods. The results show a remarkable anisotropy for the thermal conductivity in InAs nanowire. It is found that the thermal conductivity along [110] growth direction is about three times larger than that along [100] or [111] direction. With the increase of temperature, the thermal conductivity along [110] direction decreases significantly. However, the thermal conductivity along other two directions is not sensitive to temperature. Moreover, we find a crossover from ballistic to ballistic-diffusive thermal transport for a certain length of InAs nanowire. A brief physical analysis of these results is given. It is suggested that the anisotropy of thermal conductivity is common for nanowires with zinc blende structures.  相似文献   

5.
We reported the preparation and annealing effects of Zinc oxide ZnO/SiOx core-shell nanowires, in which ZnO shell layers were deposited by sputtering. Based on scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and photoluminescence (PL) investigations, we monitored structural and optical changes with respect to the post-annealing process. The samples were mostly amorphous with some crystalline ZnO structure, whereas annealing at 900-1000 °C reduced the amount of Zn elements. Thermal annealing induced change in the shape of the PL emission spectra.  相似文献   

6.
R. Ruppin 《Optics Communications》2001,190(1-6):205-209
The classical electromagnetic scattering theory for a circular cylinder is extended so as to allow for the non-local response properties of metals. Using hydrodynamic dielectric functions and applying appropriate additional boundary conditions, the generalized scattering coefficients are derived. For very thin nanowires, the main extinction peak, due to the surface plasmon, is shifted from its classical position towards the high frequency side and subsidiary peaks, due to bulk plasmon excitation, appear above the plasma frequency.  相似文献   

7.
In this work we study the optical properties of hydrogen-passivated, free-standing silicon and germanium nanowires, oriented along the [1 0 0], [1 1 0], [1 1 1] directions with diameters up to about 1.5 nm, using ab-initio techniques. In particular, we show how the electronic gap depends on wire’s size and orientation; such behaviour has been described in terms of quantum confinement and anisotropy effects, related to the quasi one-dimensionality of nanowires. The optical properties are analyzed taking into account different approximations: in particular, we show how the many-body effects, namely self-energy, local field and excitonic effects, strongly modify the single particle spectra. Further, we describe the differences in the optical spectra of silicon and germanium nanowires along the [1 0 0] direction, as due to the different band structures of the corresponding bulk compounds.  相似文献   

8.
The optical response of metallic nanowires is determined taking into account the non-local electron response by use of a self-consistent method and a jellium model. An exact formula for the reflection factor is obtained in the usual case of an hydrodynamic dielectric function. Up to a constant factor it coincides with the non-retarded limit of the amplitude obtained in a previous calculation, leading finally to the same extinction function. This function is calculated for certain metallic nanowires of experimental interest (Na, Ag). From the non-retarded near field response, the scattering amplitude at any distance can be derived.  相似文献   

9.
The ultrasonic attenuation and acoustic coupling constants due to phonon–phonon interaction and thermoelastic relaxation mechanisms have been studied for longitudinal and shear waves in B1 structured neptunium monochalcogenides NpX (X: S, Se, Te) along 〈1 0 0〉 direction in the temperature range 100–300 K. The second and third order elastic constants (SOEC and TOEC) of the chosen monochalcogenides are also computed for the evaluation of ultrasonic parameters. The ultrasonic attenuation due to phonon–phonon interaction process is predominant over thermoelastic relaxation process in these materials. The ultrasonic attenuation in NpTe has been found lesser than other materials NpS, NpSe and GdY (Y: P, As, Sb and Bi). The semiconducting or semimetallic nature of neptunium monochalcogenides can be well understood with the study of thermal relaxation time. Total ultrasonic attenuation in these materials is found to be quadratic function of temperature. The nature of NpTe is very similar to semimetallic GdP. The mechanical and ultrasonic study indicates that NpTe is more reliable, perfect, flawless material.  相似文献   

10.
The nanocrystalline MgCuZn ferrites with particle size (∼30 nm) have been synthesized by microwave-hydrothermal (M-H) method at 160 °C/45 min. The powders were densified at 750-900 °C/30 min using microwave sintering method. The sintered samples were characterized using X-ray diffraction and scanning electron microscope. The grain sizes of the sintered samples are in the range of 60-80 nm. The ultrasonic velocities have been measured on MgCuZn ferrites using the pulse transmission method at 1 MHz. The ultrasonic velocity is found to decrease with an increase of temperature. A small anomaly is observed around the Curie temperature, 520 K. The anomaly observed in the thermal variation of longitudinal velocity and attenuation is explained with the help of magneto-crystalline anisotropy constant.  相似文献   

11.
《Physics letters. A》2019,383(25):3118-3122
Impacts of phase transformation from regular wurtzite phase to a graphitic polymorph hexagonal phase under tensile loading, on the thermoelectric properties of Zinc oxide nanowires (ZnO NWs), which is oriented in the [0001] direction, are studied by combining the first-principles simulation with one-dimensional (1D) Boltzmann transport equation (BTE). Our results show that this phase transformation has greatly influenced the thermoelectric properties of the ZnO NWs. We also find that the largest value of figure of merit ZT achieved for hexagonal phase (H phase) is larger than that for wurtzite phase (W phase) in the temperature range (200 K-1000 K), which means that hexagonal phase may become the optimal choice for ZnO nanowires in thermoelectric applications.  相似文献   

12.
The nanocrystalline YIG samples with different particle sizes (20–40 nm) has been prepared using microwave–hydrothermal method. As synthesized powders were characterized using XRD and TEM. The powders were pressed and sintered at three different temperatures i.e., 700 °C/30 min, 800 °C/30 min, 900 °C/30 min, using microwave furnace. The sintered samples were characterized using XRD and TEM. The sintered samples are monophasic in nature with average grain size ranging in between 72 nm and 90 nm. The thermal variation of ultrasonic velocities [longitudinal (Vl) and transverse (VS)] and longitudinal attenuation (αl) has been measured on sintered samples by the pulse transmissionmethod at 1 MHz, in the temperature range of 300–600 K. The room temperature velocity is found to be grain size dependent and decreases with increasing temperature, except near the Curie temperature, TC, where a small anomaly is observed. The longitudinal attenuation (α1) at room temperature is also found to be more sample dependent. The temperature variation of ultrasonic longitudinal attenuation exhibits a sharp maximum just below Curie temperature (TC). The above observations were carried on in the demagnetized state, on the application of a saturation field of 380 mT, the anomaly observed in the thermal variation of velocities (longitudinal and transverse) and attenuation is found to disappears. The observed interaction of ultrasonic velocity with domain walls has been qualitatively explained with the help oftemperature variation of magneto-crystalline anisotropy constant (k1) and Landau’s theory.  相似文献   

13.
The ultrasonic attenuation in thulium monochalcogenides TmX (X=S, Se and Te) has been studied theoretically with a modified Mason’s approach in the temperature and range 100 K to 300 K along 〈100〉, 〈110〉 〈111〉 crystallographic directions. The thulium monochalcogenides have attracted a lot of interest due to their complex physical and chemical characteristics. TmS, TmSe and TmTe are trivalent metal, mixed valence state, and divalent semiconductor, respectively. Coulomb and Born-Mayer potential is applied to evaluate the second- and third-order elastic constants. These elastic constants are used to compute ultrasonic parameters such as ultrasonic velocities, thermal relaxation time, and acoustic coupling constants that, in turn, are used to evaluate ultrasonic attenuation. A comparison of calculated ultrasonic parameters with available theoretical/experimental physical parameters gives information about classification of these materials.   相似文献   

14.
Zinc oxide (ZnO) nanowires have been synthesized by using tubular furnace chemical vapor deposition technique. The morphology, chemical composition and crystal structure of as-synthesized ZnO nanowires were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Four-terminal current-voltage (I-V) measurements were employed to study the electrical conductance of ZnO nanowires under various testing gas environments for gas sensing purpose. The I-V curves at temperature ranging from 150 to 300 K were recorded in the testing chamber under vacuum. The Arrhenius plot shows perfect linear relationship between the logarithm of the current I and inverse temperature 1/T. The donor level of the semiconducting nanowires is about 326 meV. The I-V behaviors were found to be reversible and repeatable with testing gases. The electrical conductivity was enhanced by a factor of four with ambient CO gas compared to that in vacuum and other testing gases. The optoelectronic properties of the ZnO nanowires were obtained by two-terminal I-V measurement method while the nanowires were illuminated by a ruby laser. The electrical conductivity was increased by 60% when the laser was present in comparison to that when the laser was off. Those significant changes suggest that nano-devices constructed by the ZnO nanowires could be used in gas sensing and optical switching applications.  相似文献   

15.
Depending on the temperature, the charge density wave (CDW) nonlinear conductivity of the blue bronzes A0.30MoO3 (A=K, Rb) shows two different regimes: a strongly damped motion above ∼50 K and motion with almost no damping below ∼50 K. In a search for an elastic signature of this CDW behaviour, we performed ultrasonic measurements on Rb0.30MoO3 and Rb0.30(Mo1−xVx)O3 single crystals between 4 K and 300 K. In Rb0.30MoO3, at T∼50 K, upon cooling, a large increase of the sound velocity is observed. The ultrasonic attenuation coefficient shows an increase down to 50 K followed by a plateau. In Rb0.30(Mo1−xVx)O3 (x=0.4 at%) the anomaly broadens and is shifted towards higher temperatures. The results are discussed in terms of CDW glass.  相似文献   

16.
本文主要研究一种新型微位移传感器。它用超声波原理进行检测,以喷流的水柱作为超声波传播的介质,可以在恶劣环境下进行位移测量。位移等于超声波传播的速度与超声波从发到收之间传播时间的乘积。考虑到声速会随介质一水的温度的升高而增大,设计时进行了实时温度补偿,提高了系统的精度。  相似文献   

17.
《Physics letters. A》2020,384(30):126751
The thickness dependent in-plane thermal conductivity of layered Tungsten ditelluride (WTe2) is investigated by first-principles calculation. With the layer number increasing from one to infinite, the thermal conductivity displays a decrease to increase trend. The underlying mechanism is attributed to the change of the phonon dispersion relations. As the layer number increases, optical phonon branches shift downward, which provide more channels for the Umklapp scattering, and result in the decrease of the thermal conductivity. Furthering increasing the layer number makes those low-frequency optical phonon branches having high group velocity and leads to the increase of the lattice thermal conductivity.  相似文献   

18.
The size dependence of ionization potentials, electron affinities and cohesive energies of small Hg n (n= 3,4,5,6,8,13, 15) clusters has been studied using a combination of relativistic energy-consistent pseudopotentials supplemented by core-polarization potentials and highly correlated valence wavefunctions. In order to ensure a size extensive treatment of electron correlation, coupled-cluster and quantum Monte Carlo calculations have been performed, and excellent agreement observed between the results obtained with the two methods. The experimentally observed systematic trends of these properties with respect to increasing cluster size are reproduced well.  相似文献   

19.
By varying the substrate temperature in the range of 800-1000 °C, the conditions for the synthesis of AlN nanowires were optimized. Al powders were heated under flowing ammonia gas. The samples were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and photoluminescence (PL) spectroscopy. Based on the absence of tip particles, the growth mechanism of AlN nanowires was considered to follow a vapor-solid process. The overall intensity of the PL spectra was increased by increasing the synthesis temperature, whereas their shapes were changed by varying the synthesis temperature. The associated emission mechanisms are discussed.  相似文献   

20.
Two kinds of ferromagnetic SiC based nanowires with and without Ni catalyst were successfully synthesized by employing microwave heating method. The comprehensive characterizations and vibrating sample magnetometer (VSM) have been applied to investigate the micro-structures and magnetic properties of as-grown nanowires. For the nanowires synthesized without using Ni catalyst, the diameters and lengths are in the range of 20–60 nm and dozens of micrometers, respectively. Particularly, the results of transmission electron microscopy (TEM) show that the nanowires consist of SiC core and SiOx shell. The SiC/SiOx coaxial nanowires exhibit room-temperature ferromagnetism with saturation magnetization (Ms) of 0.2 emu/g. As to the nanowires obtained using Ni catalyst, the scanning electron microscopy (SEM) results indicate that the Ni catalyzed nanowires have a nano-particle attached on the tip and a uniform diameter of approximately 50 nm. The vapor-liquid-solid (VLS) growth mechanism can be used to explain the formation of the Ni catalyzed nanowires. The detection result of VSM indicates that the Ni catalyzed nanowires possess the paramagnetism and the ferromagnetism, simultaneously. The enhancement of the ferromagnetism, compared with the SiC/SiOx coaxial nanowires, could be attributed to the Ni2Si and NiSi phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号