首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

2.
The effects of annealing temperature and manganese substitution on the formation, microstructure and magnetic properties of MnxZn1−xFe2O4 (with x varying from 0.3 to 0.9) through a solid-state method have been investigated. The correlation of the microstructure and the grain size with the magnetic properties of Mn–Zn ferrite powders was also reported. X-ray diffraction (XRD), a scanning electron microscope (SEM) and a vibrating sample magnetometer (VSM) were utilized in order to study the effect of variation of manganese substitution and its impact on crystal structure, crystalline size, microstructure and magnetic properties of the ferrite powders formed. The XRD analysis showed that pure single phases of Mn–Zn ferrites were obtained by increasing the annealing temperature to 1200–1300 °C. Increasing the annealing temperature to ?1300 °C led to abnormal grain growth with inter-granular pores and this led to a decrease in the saturation magnetization. Moreover, an increase in the Mn2+ ion substitution up to x=0.8 increased the lattice parameter of the formed powders due to the high ionic radii of the Mn2+ ion. Mn–Zn ferrites phases were formed and the positions of peaks were shifted by substituting manganese. The average crystalline size was increased by increasing the annealing temperature and decreased by increasing the substitution by manganese up to 0.8. The average crystalline size was in the range 95–137.3 nm. The saturation magnetization of the Mn–Zn-substituted ferrite powders increased continuously with an increase in the Mn concentration up to 0.8 at annealing temperatures of 1200–1300 °C. Further increase of Mn substitution up to 0.9 led to a decrease of saturation magnetization. The saturation magnetization increased from 17.3 emu/g for the Mn0.3Zn0.7Fe2O4 phase particles produced to 59.08 emu/g for Mn0.8Mn0.2Fe2O4 particles.  相似文献   

3.
The water-soluble Mn2+-doped ZnS quantum dots (Mn:ZnS d-dots) were synthesized by using thioglycolic acid (TGA) as stabilizer in aqueous solutions in air, and characterized by X-ray powder diffraction (XRD), UV-vis absorption spectra and photoluminescence (PL) emission spectroscopy. The sizes of Mn:ZnS d-dots were determined to be about 2 nm using XRD measurements and the UV-vis absorption spectra. It was found that the Mn2+4T1 → 6A1 emission intensity of Mn:ZnS d-dots significantly increased with the increase of Mn2+ concentration, and showed a maximum when Mn2+ doping content was 1.5%. If Mn2+ concentration continued to increase, namely more than 1.5%, the Mn2+4T1 → 6A1 emission intensity would decrease. In addition, the effects of TGA/(Zn + Mn) molar ratio on PL were investigated. It was found that the peak intensity ratio of Mn2+4T1 → 6A1 emission to defect-states emission showed a maximum when the TGA/(Zn + Mn) molar ratio was equal to 1.8.  相似文献   

4.
CdS:Mn2+/ZnS and CdS:Mn2+/CdS core–shell nanoparticles were synthesized in aqueous medium via chemical precipitation method in an ambient atmosphere. Polyvinylpyrrolidone (PVP) was used as a capping agent. The effect of the shell (ZnS and CdS) thickness on CdS:Mn2+ nanoparticles was investigated. Inorganically passivated core/shell nanocrystals having a core (CdS:Mn2+) diameter of 4 nm and a ZnS-shell thickness of ∼0.5 nm exhibited improved PL intensity. Optimum concentration of doping ions (Mn2+) was selected through optical study. For all the core–shell samples two emission peaks were observed, the first one is band edge emission in the lower wavelength side due to energy transfer to the Mn2+ ions in the crystal lattice; the second emission is characteristic peak of Mn2+ ions (4T1 → 6A1). The XRD, TEM and PL results showed that the synthesized core–shell particles were of high quality and monodisperse.  相似文献   

5.
Green emitting LiGa5O8:Mn powder phosphor has been prepared in a short time by solution combustion method. Powder X-ray diffraction pattern indicated a dominant phase of LiGa5O8 with another secondary LiGaO2 phase. Morphology aspects were studied by using field emission scanning electron microscopy. Upon UV light excitation (296 nm), the phosphor exhibits a strong green luminescence (510 nm), which corresponds to the 4T16A1 transition of Mn2+ ions in an environment close to tetrahedral symmetry. EPR spectrum exhibits resonance signals characteristic of Mn2+ ions. It is observed that the spin-Hamiltonian parameters g and A do not vary with temperature. The magnitude of the hyperfine splitting constant (A) in the present study indicates that there exists a moderately covalent bonding between Mn2+ ions and the surrounding ligands. The zero-field splitting parameter (D), spin concentration (N) and paramagnetic susceptibility (χ) have also been evaluated.  相似文献   

6.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

7.
ZnAl2O4:Mn green light emitting powder phosphors have been prepared by urea combustion technique involving furnace temperatures about 500 °C in a short time (<5 min). The prepared powders were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectrometry and the surface area measurements by a Brunauer-Emmet-Teller (BET) adsorption isotherms. The EPR spectrum exhibits a resonance signal at g≈2.0, which shows a six-line hyperfine structure (hfs). From the EPR spectra the spin-Hamiltonian parameters have been evaluated at room temperature as well as at 110 K. EPR and photoluminescence (PL) studies revealed that manganese ions were present in divalent state and the site symmetry around Mn2+ ions is distorted tetrahedral. The spin concentration (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed. The green emission at 511 nm in ZnAl2O4:Mn phosphor is assigned to a transition from the upper 4T16A1 ground state of Mn2+ ions.  相似文献   

8.
Manganese-activated strontium hexa-aluminate (SrAl12O19) phosphor has been prepared at low temperature (500 °C) and in a very short time (<5 min) by urea combustion route. Powder X-ray diffraction pattern showed the presence of hexagonal SrAl12O19 phase. Scanning electron microscopy (SEM) indicated the presence of several particles with sizes of 200 nm. The luminescence of Mn2+ activated SrAl12O19 exhibits a strong green emission peak around 515 nm from the synthesized phosphor particles under excitation (451 nm). The luminescence is assigned to a transition from the upper 4T16A1 ground state of Mn2+ ions. EPR investigations also indicated the presence of Mn2+ ions in the prepared material. From the observed EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between Mn2+ ions and the surrounding ligands. The variation of zero-field splitting parameter (D) with temperature is measured and discussed. The mechanism involved in the generation of a green emission has been explained in detail.  相似文献   

9.
In this study, Nanocrystalline Mn–Mg–Zn ferrite with the chemical formula MnxMg0.5−xZn0.5Fe2O4 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) was successfully synthesized by the glycine-nitrate autocombustion process using glycine as a fuel and nitrates as oxidants. The as-synthesized powders were characterized by the X-ray diffraction analysis, field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer. The X-ray diffraction data was used to determine the lattice constant, cation distribution and the oxygen position parameter. The results reveal that the nanocrystalline Mn–Mg–Zn ferrite has an average crystallite size of 35–67 nm and particle size of 40 nm. The lattice parameter increases linearly with an increase in the Mn content. The FTIR analysis confirms the intrinsic vibrational frequencies of the tetrahedral and octahedral of the spinel structure. The magnetic measurements indicate that the coercivity decreases, and the magnetization increases by increasing the Mn content.  相似文献   

10.
This paper reports on the luminescence and electron paramagnetic resonance (EPR) investigations on MgSrAl10O17:Mn2+ green-emitting phosphor. Single-phase MgSrAl10O17 was successfully synthesized by the one-step solution combustion route without the need for post-annealing at a higher temperature. Crystallization of the powder was confirmed by X-ray diffraction. The luminescence of Mn2+- activated MgSrAl10O17 shows a strong green-emission peak around 515 nm due to the 4T16A1 transition of Mn2+ ions under the excitation (453 nm). The EPR spectra of Mn2+ ions exhibit a sextet hyperfine structure centered at g ≈1.995. The Mn2+ ion occupies Mg sites which are in tetrahedral symmetry. The magnitude of the hyperfine splitting (A) indicates that Mn2+ is in a moderately ionic environment. The number of spins participating in resonance (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed.  相似文献   

11.
The LaAl11O18:Mn2+ powder phosphor has been prepared using a self-propagating synthesis. Formation and homogeneity of the LaAl11O18:Mn2+ phosphor has been verified by X-ray diffraction and energy dispersive X-ray analysis respectively. The EPR spectra of Mn2+ ions exhibit resonance signals with effective g values at g≈4.8 and g≈1.978. The signal at g≈1.978 exhibits six-line hyperfine structure and is due to Mn2+ ions in an environment close to tetrahedral symmetry, whereas the resonance at g≈4.8 is attributed to the rhombic surroundings of the Mn2+ ions. It is observed that the number of spins participating in resonance for g≈1.978 increases with decreasing temperature obeying the Boltzmann law. Upon 451 nm excitation, the photoluminescence spectrum exhibits a green emission peak at 514 nm due to 4T1 (G)→6A1 (S) transition of Mn2+ ions. The crystal field parameter Dq and Racah inter-electronic repulsion parameters B and C have been evaluated from the excitation spectrum.  相似文献   

12.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

13.
The degree of order S of Mn–Ir layers and the exchange anisotropy of Mn–Ir/Co–Fe bilayers were investigated for various chemical compositions of Mn–Ir layers, underlayer materials, and underlayer thicknesses. It was found that: (1) The compositional range over which L12-phase Mn3Ir could be formed is 22–32 at% Ir and giant exchange anisotropy is obtained in this range. (2) Ru is favorable as an underlayer material for avoiding interdiffusion with the Mn–Ir layer during deposition on the temperature elevated substrate. (3) The underlayer thickness could be reduced to 5 nm while maintaining a giant exchange anisotropy in excess of 1 erg/cm2.  相似文献   

14.
A colloidal suspension of ZnS:Mn nanocrystals was prepared in sodium bis(2-ethylhexyl)suflosuccinate reverse micelles, and then modified by surfactants with phosphate or carboxyl groups. The photoluminescent intensity at 580 nm due to d-d transition of Mn2+ ions increases up to a factor of 6.3 and its quantum efficiency increases from 1.7% to 8.1% after modification. According to 31P nuclear magnetic resonance spectra, surfactants with phosphate groups adsorb on the surface of ZnS nanocrystal and 31P nucleus spins are relaxed rapidly by interaction with five unpaired 3d electrons of Mn2+, showing that phosphate groups are located in the vicinity of Mn2+. The excitation spectra for the emission due to phosphate or carboxyl groups are similar to those for the emission at 580 nm corresponding to the excitation of ZnS. Both excitation spectra shift in parallel with increasing the amount of surfactant to show the linear relationship. We, therefore, attribute the increase in quantum efficiency at 580 nm to additional energy transfer of ZnS→functional groups→Mn2+ as well as to the reduction of energy loss due to non-radiative transition by surface modification.  相似文献   

15.
In this work we present the results obtained from the luminescence spectra and X-ray diffraction as well as transmission electron microscopy, at room temperature on crystals of NaCl1−xNaBrx:MnCl2:0.3% (x=0.00, 0.05, 0.25, and 0.50). The results suggest the existence of structures between the crystal planes (1 1 1) and (2 0 0), which may be associated with different types of Mn2+ arrangements, such as dipole complexes, octahedral and rhombohedral structures as well as other possible nanostructures that include mixtures of bromine/chlorine ions. These are responsible for the emission spectra of “as grown” crystals consisting of maxima around 500 nm and 600 nm. The green emission has been usually attributed to rhombohedral/tetrahedral symmetry sites; the present results point out that this is due to Mn–Cl/Br nanostructures with rhombohedral structure. On the other hand when the crystals are thermally quenched from 500 °C to room temperature the structures previously detected present changes. Only a red band appears around 620 nm if the samples are later annealed at 80 °C.  相似文献   

16.
The effect of hydrostatic pressure on the emission spectra and fluorescence lifetime (τ) of Mn2+ in LaMgAl11O19 (LMA) crystals up to 101 kbar has been studied at room temperature. From the position of the peak (4T1 → 6A1 transition) in the emission spectra, we estimated that the pressure induced red-shift. A variation, slowly decreasing, in the fluorescence lifetime (τ) values for 4T1 → 6A1 transition was observed. The pressure-induced red-shift and lifetime variation could be described by simple models. In the considered pressure range (0-101 kbar), a good agreement between the experimental values and theoretically predicted values was obtained.  相似文献   

17.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

18.
We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr2+ ions substituting for Zn2+ ions without any detectable secondary phase in as-synthesized Zn0.97Cr0.03O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization Ms as well as an increase of coercivity of H2-annealed Zn0.97Cr0.03O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H2-annealed Zn0.97Cr0.03O:H nanoparticles are almost doubled upon H2-annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy Ho may play an important role in the origin of H2-annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles.  相似文献   

19.
Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic structure involving two magnetic orbits for the Mn atoms [Ivanov et al., 2011 [3]]. Mn3−xCdxTeO6 (x=0, 1, 1.5, and 2) ceramics were synthesized by solid state reaction and investigated using X-ray powder diffraction, electron microscopy, and calorimetric and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting the structure of the compound. The Mn and Cd cations were found to be randomly distributed over the A-site. Magnetization measurements indicated that the samples order antiferromagnetically at low temperature with a transition temperature that decreases with increasing Cd doping. The nuclear and magnetic structure of one specially prepared 114Cd containing sample: Mn1.5114Cd1.5TeO6, was studied using neutron powder diffraction over the temperature range 2-295 K. Mn1.5114Cd1.5TeO6 was found to order in an incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [Ivanov et al., 2011 [3]]. However, with a lower transition temperature and the extension of the ordered structure confined to order 240(10) Å.  相似文献   

20.
《Current Applied Physics》2018,18(2):150-154
The electronic structure and magnetic properties of polycrystalline BaTi1-xMnxO3 (x = 0–0.1) compounds prepared by solid-state reactions were studied. The results revealed that the increase in Mn content (x) did not change the oxidation numbers of Ba (+2) and Ti (+4) in BaTi1-xMnxO3. However, there is the change in Mn valence that Mn3+,4+ ions coexist in the samples with x = 0.01–0.04 while Mn4+ ions are almost dominant in the samples with x = 0.06–0.1. We also point out that Mn3+ and Mn4+ ions substitute for Ti4+ and prefer locating in the tetragonal and hexagonal BaTiO3 structures, respectively, in which the hexagonal phase constitutes soon as x = 0.01. Particularly, all the samples exhibit room-temperature ferromagnetism. Ferromagnetic order increases with increasing x from 0 to 0.02, but decreases as x ≥ 0.04. We think that ferromagnetism in BaTi1-xMnxO3 is related to lattice defects and/or exchange interactions between Mn3+ and Mn4+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号