共查询到20条相似文献,搜索用时 10 毫秒
1.
First-principle calculations have been performed to study the sensing of CO gas in various considered configurations. The adsorption of CO on zigzag BN nanoribbon (ZBNNR) and zigzag AlN nanoribbon (ZAlNNR) was modelled in five different possibilities. The effect of CO adsorption is to reduce the band gap in both types (BN/AlN) of the nanoribbons. Interestingly, a finite magnetic moment (0.96 for ZBNNR and 0.69 for ZAlNNR) has been obtained which depends upon the adsorption configuration of CO. Half-metallicity was also observed upon selective CO adsorption on ZAlNNR irrespective of the ribbon width. Present findings suggest that CO gas molecules could be detected through adsorption on BN/AlN nanoribbons via changes in electronic and/or magnetic properties. 相似文献
2.
This paper deals with structural and electronic properties of a BN nanoribbon with the lateral profile having a zig-zag geometry, either perfect or with different kinds of defects. Calculations were implemented under standard DFT calculation procedures aiming to determine equilibrium structural positions and electronic properties. The considered defects include single and multiple vacancies, anti-sites and substitutional defects with carbon. Besides a discussion about the specific characteristics, structural and electronic, found for each case, the results are compared with previous calculations and experimental results available in the literature for the infinite layer, including possible magnetization resulting from unpaired electronic spins. Formation energies associated with defects of the nanoribbon are also calculated and compared with similar results for the infinite BN monolayer. 相似文献
3.
Density functional theory calculations have been used to investigate the rolling process of armchair boron nitride nanoribbons (n-ABNNRs, n?=?6,?8,?10,?12,?14,?16) to form (n,?0) zigzag boron nitrogen nanotubes (ZBNNTs, n?=?3–8). Results showed that by rolling (increasing the curvature) energy gap decreases and the difference between the initial and final states increases dramatically with decreasing the ribbon width. It was found that ZBNNTs have direct band gaps and the gap increases by diameter, while ABNNRs have direct band gaps which oscillate with the ribbon width. 相似文献
4.
On the basis of the comprehensive first-principles computations, we investigated the geometries, electronic and magnetic properties of zigzag and armchair boron nitride nanoribbons (BNNRs) with the divacancy defect of 5–8–5 ring fusions formed by removing B–N pair, where the defect orientation and position are considered. Our computed results reveal that all of the defective BNNRs systems can uniformly exhibit nonmagnetic semiconducting behavior, and the formation of the divacancy 5–8–5 defect can significantly impact the band structures of BNNRs with not only the zigzag but also armchair edges, where their wide band gaps are reduced and the defect orientation and position play an important role. Clearly, introducing divacancy defect can be a promising and effective approach to engineer the band structures of BNNRs, and the present computed results can provide some valuable insights for promoting the practical applications of excellent BN-based nanomaterials in the nanodevices. 相似文献
5.
C.Q. Qu L. Qiao C. Wang S.S. Yu W.T. Zheng Y.Z. Fu Q. Jiang 《Solid State Communications》2008,146(9-10):399-402
The first-principles density-functional theory is used to study the geometrical structures and field emission properties of different boron nitride nanocones with 240 disclination. It is found that the nanocones can be stable under applied electric field and the emission current is sensitively dependent on the tips of nanocones. The nanocones with homonuclear bonds at the tip can introduce additional energy states near Fermi level, which can reduce the ionization potential and increase the emission current of these boron nitride nanocones. This investigation indicates that the boron nitride nanocone can be a promising candidate as a field emission electron source. 相似文献
6.
《Physics letters. A》2020,384(25):126483
The boron nitride (BN) nanosheet is an isostructural analog of graphene and can be viewed as the structure that C atoms in graphene are replaced with alternating B and N. The easily modulated band-gap of BN nanosheet by simply passivating its edge(s) makes it is promising for many potential applications in nanodevices and nanoelectronics. We further systematically theoretically study the magnetic and electronic properties of passivated-ZBNNR by nonmetallic atom(s), here. According to our calculations, all considered structures show magnetic feature, and the ZBNNRs can be metal or half-metal or semiconductor depending on the termination details. The great application-potential of the passivated-ZBNNRs is further confirmed based on our results. 相似文献
7.
First-principles calculations have been performed on the electronic structures and magnetic properties of a new Ti2Co-based full-Heusler alloy Ti2CoGe. The calculations predict the Ti2CoGe is a half-metallic ferromagnet at the equilibrium lattice constant with the minority-spin energy gap of 0.60 eV. It is found that the total magnetic moment (Mt) and the number of valence electrons (Zt) in Ti2CoGe obey a new Slater–Pauling (SP) rule of Mt=Zt−18 and the rule also can be applied to other Ti2Co-based half-metallic full-Heusler alloys. The Ti2CoGe alloy keeps a 100% polarization at Fermi level and maintains the half-metallic character for lattice constants ranging between 6.05 and 6.67 Å. 相似文献
8.
ABSTRACTThe electronic structures of C/B/Al-doped armchair GaN nanoribbons (aGaNNRs) are systematically studied by using density functional theory. We find that the original aGaNNRs are direct band gap semiconductors and that the gaps monotonically decrease with increasing widths. Interestingly, the B- or Al-doped aGaNNRs are also direct-band gap semiconductors with a slightly larger gap than their undoped aGaNNRs, while the C-doped aGaNNRs display metallic characteristics with an impurity state across the Fermi level in band structures. The semiconducting or metallic behaviours of C/B/Al-doped aGaNNRs can be explained by the orbital coupling between the extrinsic atom and primary Ga, N in their partial density of states. Our results show a useful way to modulate the band gaps of aGaNNRs.Using the density-functional theory, we performed a theoretical research to study the electronic structures of C/B/Al-doped armchair gallium nitride nanoribbons. The calculated band structures show that the perfect and original aGaNNRs are direct semiconductors regardless of ribbon widths, and gaps monotonically decrease with increasing the widths. The B/Al-doped aGaNNRs are semiconductors with a slightly larger gap, while metallic behavior presents in C-doped aGaNNRs with an impurity band across the EF. The results show a useful way to modulate the band gaps of aGaNNRs. 相似文献
9.
<正>The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method.We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain.In particular,the features of the conductance steps such as position and width are significantly changed by strain.As a strong tensile strain is exerted on the nanoribbon,the highest conductance step disappears and subsequently a dip emerges instead.The energy band structure and the local current density of armchair boron-nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics.In addition,the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon. 相似文献
10.
The transport properties of hexagonal boron--nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron--nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron--nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron--nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon. 相似文献
11.
The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZCN/ CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB′-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA′-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with ABstacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices. 相似文献
12.
Frank J. Owens 《Molecular physics》2013,111(12):1527-1531
Density functional theory (DFT) employing the local spin density approximation and including correlation functionals is used to show that increasing the boron content relative to the nitrogen content in boron nitride nanoribbons can significantly reduce the band gap making the ribbons semiconducting. Armchair ribbons, but not zigzag ribbons, having excess borons are predicted to have a more stable optimized triplet structure than the optimized singlet structure. The triplet structure is predicted to have a higher density of states at the top of the valence band near Fermi level for the spin down state indicating it could be a ferromagnetic semiconductor. The results suggest a possible new approach to developing ferromagnetic semiconductors. 相似文献
13.
利用第一性原理的计算方法, 研究了A-Z-A型GNR-FET的电子结构和输运性质及其分子吸附效应. 得到了以下结论: 纯净的A-Z-A型GNR-FET具有典型的双极型晶体管特性, 吸附分子的存在会使纳米带能隙变小. 对于吸附H, H2, H2O, N2, NO, NO2, O2, CO2和SO2分子的情况, A-Z-A型GNR-FET仍然保持着场效应晶体管的基本特征, 但吸附不同类型的分子会使GNR-FET的输运特性发生不同程度的改变; 对于吸附OH分子的情况, 输运特性发生了本质的改变, 完全不具有场效应晶体管的特性. 这些研究结果将有助于石墨烯气体探测器的工程实现, 并对应用于不同环境中GNR-FET的设计具有重要指导意义. 相似文献
14.
基于紧束缚格林函数方法,研究了两半无限长锯齿型石墨纳米带叠层复合结的电子输运性质.结果表明,层间次近邻相互作用、叠层区长度及门电压对复合结的电子透射谱有重要调制作用.层间次近邻相互作用导致复合结的透射谱关于费米能呈现非对称性,与实验结果很好相符.低于费米能第一子能区内周期性出现透射系数为0和1的台阶,呈现全反射与透射现象.随散射结长度增加,透射系数在1内周期性振荡,呈现明显的量子干涉效应.在门电压调控下,低于费米能的透射系数出现了从1到0的转变,类似于开关效应.相关结果对基于石墨烯器件的设计与应用有指导意义. 相似文献
15.
采用基于密度泛函理论的第一性原理电子结构和输运性质计算,研究了扶手椅型石墨纳米带(具有锯齿边缘)的双空位缺陷效应.研究发现:双空位缺陷的存在并没有改变石墨纳米带的金属特性,但改变了费米面附近的能带结构.同时,双空位缺陷的取向对石墨纳米带的输运性质有很重要的影响.对于奇数宽度的纳米带,斜向双空位缺陷使得石墨带导电性能减弱,而垂直双空位能基本保留原有的线性伏安特性,导电性能降低较少;对于偶数宽度的纳米带,斜向双空位缺陷会使石墨带导电性能明显增强,而垂直双空位缺陷则具有完整石墨带的输运性质.
关键词:
石墨纳米带
585双空位缺陷
电子结构
输运性质 相似文献
16.
The effects of single C-chain on the stability, structural and electronic properties of zigzag BN nanoribbons (ZBNNRs) were investigated by first-principles calculations. C-chain was expected to dope at B-edge for all the ribbon widths Nz considered. The band gaps of C-chain doped Nz-ZBNNR are narrower than that of perfect ZBNNR due to new localized states induced by C-chain. The band gaps of Nz-ZBNNR-C(n ) are direct except for the case of C-chain position n=2. Band gaps of BN nanoribbons are tunable by C-chain and its position n, which may endow the potential applications of BNNR in electronics. 相似文献
17.
Using non-equilibrium Green׳s function and ab initio calculations we investigate structural, electronic, and transport properties of a junction consisting of armchair hexagonal boron phosphide nanoribbon (ABPNR) contacted by two semi-infinite electrodes composed of armchair graphene nanoribbons (AGNRs). We consider three different configurations including the pristine AGNR–BP–GNR and substitutions for Iron atoms, namely on phosphorus and boron atoms at one edge of the BP nanoribbon. The spin current polarization in all these cases is extracted for each structure and bias. Such hybrid system is found to exhibit not only significant spin-filter efficiency (SFE) but also tunable negative differential resistance (NDR). 相似文献
18.
《Current Applied Physics》2014,14(3):337-339
We have investigated the electric field effect on horseshoe-shape carbon nanotubes (CNTs) resulting from hydrogen adsorption on the single-wall armchair (n,n)CNTs with 6 ≤ n ≤ 16 by using the density functional theory calculations. The horseshoe-shape CNT is completely unzipped into a graphene nanoribbon upon applying a critical electric field, which decreases with increasing CNT diameter, thus enabling one to select a nanoribbon width. A simple model based on the tensile force exerted on the tube walls by the applied electric field was introduced to understand the CNT-diameter dependence of the critical field. 相似文献
19.
Recently, triangle vacancy in hexagonal boron nitride is observed experimentally. Using nonequilibrium Green’s function method, we investigate thermal transport properties of boron nitride nanoribbons (BNNRs) with a triangle vacancy. The effect of triangle vacancy on the phonon transmission of zigzag-edged BNNRs (Z-BNNRs) is different from that of armchair-edged BNNRs (A-BNNRs). The triangle vacancy induces antiresonant dips in the spectrum of Z-BNNRs. Moreover, the boron-terminated triangle vacancy causes antiresonant zero-transmission dip and the number of the zero-transmission dip increases with the geometrical size of triangle vacancy. For the A-BNNRs with triangle vacancy, except some antiresonant dips, a resonant peak is found in the transmission. The antiresonant and resonant phenomena are explained by analyzing local density of states and local thermal currents. Although the antiresonant dip and the resonant peak are both originated from quasibound states, their distributions of local thermal currents are distinct, which leads to the transport discrepancy. In addition, the thermal conductance of BNNRs decreases linearly with increasing the vacancy size. 相似文献
20.
利用基于密度泛函理论的第一性原理计算方法, 研究了应变和C原子掺杂对单层BN纳米片的电子结构和磁学性质的影响. 计算结果表明未掺杂的单层BN纳米片具有宽的直接带隙, 在压缩和拉伸应变的作用下, 带隙会分别增大和减小, 但应变对带隙的调制整体效果不太明显. 单个C原子掺入BN纳米片的态密度揭示体系呈现出半金属性(Half-metallicity), 磁矩主要源于C 2p态, 而B 2p和N 2p态在极化作用下也能提供部分磁矩. 两个C原子掺入BN纳米片时, 磁性基态会随着C原子的间距发生变化: 当两C原子为最近邻(nn)和次近邻(nnn)时, 反铁磁态为磁性基态; 而当两C原子为次次近邻(nnnn)时, 铁磁态为基态, 并且其态密度也显示出半金属性. 相似文献