首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a systemic study of the structural and electronic properties of Cun nanowires (n=5, 9 and 13) encapsulated in armchair (8,8) gallium nitride nanotubes (GaNNTs) using the first-principles calculations. We find that the formation processes of these systems are all exothermic. The initial shapes are preserved without any visible changes for the Cu5@(8,8) and Cu9@(8,8) combined systems, but a quadratic-like cross-section shape is formed for the outer nanotube of the Cu13@(8,8) combined system due to the stronger attraction between nanowire and nanotube. The electrons of Ga and N atoms in outer GaN sheath affect the electron conductance of the encapsulated metallic nanowire in the Cu13@(8,8) combined system. But in the Cu5@(8,8) and Cu9@(8,8) combined systems, the conduction electrons are distributed only on the copper atoms, so charge transport will occur only in the inner copper nanowire, which is effectively insulated by the outer GaN nanotube. Considering the maximal metal filling ratio in nanotube, we know that the Cu9@(8,8) combined system is top-priority in the ultra-large-scale integration (ULSI) circuits and micro-electromechanical systems (MEMS) devices that demand steady transport of electrons.  相似文献   

2.
Investigations have been carried out to study the ferromagnetic properties of transition metal (TM) doped wurtzite GaN from first principle calculations using tight binding linear muffin-tin orbital (TBLMTO) method within the density functional theory. The present calculation reveals ferromagnetism in nickel doped GaN with a magnetic moment of 1.13 μB for 6.25% of Ni doping and 1.32 μB for 12.5% of nickel doping, there is a decrease of magnetic moment when two Ni atoms are bonded via nitrogen atom. The Ga vacancy (VGa) induced defect shows ferromagnetic state. Here the magnetic moment arises due to the tetrahedral bonding of three N atoms with the vacancy which is at a distance of 3.689 Å and the other N atom which is at a distance of 3.678 Å .On the other hand the defect induced by N vacancy (VN) has no effect on magnetic moment and the system shows metallic character. When Ni is introduced into a Ga vacancy (VGa) site, charge transfer occur from the Ni ‘d’ like band to acceptor level of VGa and formed a strong Ni–N bond. In this Ni–VGa complex with an Ni ion and a Ga defect, the magnetic moment due to N atom is 0.299 μB .In case of Ni substitution in Ga site with N vacancy, the system is ferromagnetic with a magnetic moment of 1 μB.  相似文献   

3.
4.
1 MeV Cu2+ ions have been implanted into un-doped ZnO and Ga-doped ZnO films with a dose of 1 × 1017 ions/cm2 at room-temperature. Cu ion-implanted Ga-doped ZnO had ferromagnetism at room-temperature and the saturation magnetization of this sample was estimated to be 0.12 μB per Cu, while the Cu ion-implanted un-doped ZnO did not show ferromagnetic behavior. Near-edge X-ray fine structure (NEXAFS) spectroscopy revealed that a partial amount of implanted Cu ions existed as Cu2+ (d9) state in Ga-doped ZnO film. On the other hand, almost Cu atoms existed as Cu1+ (d10) state in un-doped ZnO film. However, the subsequent annealing at temperature above 800 °C on this ferromagnetic sample induced the annihilation of ferromagnetism due to the formation of non-ferromagnetic Cu2O phase.  相似文献   

5.
In view of important role of inducing and manipulating the magnetism in 2D materials for the development of low-dimensional spintronic devices, the magnetism of GaN monolayer with Ga vacancy and nonmagnetic chemical doping are investigated using first-principles calculations. It is found that pure GaN monolayer has graphene-like structure and is nonmagnetic. While, a neutral Ga vacancy can induce 3 μB intrinsic magnetic moment, localized mainly on the neighboring N atoms. Interestingly, after one Mg or Si atom doping in g-GaN with Ga vacancy, the magnetic moment can be modified to 4 μB or 2 μB respectively due to the change in hole number. Meantime, Mg-doped g-GaN with Ga vacancy shows half-metal character. With the increasing of doping concentrations, the magnetic moment can be further tuned. The results are interesting from a theoretical point of view and may open opportunities for these 2D GaN based materials in magnetic devices.  相似文献   

6.
Epitaxial films of ZnO doped with magnetic ion Fe and, in some cases, with 1% Al show clear evidence of room temperature ferromagnetic ordering but containing huge amount of paramagnetic moment in it. The total ferromagnetic and paramagnetic contributions have been extracted from the low temperature SQUID measurements. A clear correlation between the magnetization per transition metal ion and the ratio of the number of carriers and number of donors have been found in these films and established the theory of carrier induced ferromagnetism. The experimental data has been best explained through the modification of electronic structure of oxide semiconductors with impurity states.  相似文献   

7.
We have investigated the spin and orbital moments of Ir-based double perovskites with 5dn (n = 3, 4, 5) states by local spin-density approximation with spin-orbital coupling and Hubbard correlation (LSDA+SOC+U). Our calculations reveal that the ratio of orbital to spin momentum Lz/Sz approaches to certain values for the double perovskites with different 5dn (n = 3, 4, 5) shell fillings. Based on d orbits, a spin-orbital coupling model with exchange splitting is proposed and it can well describe the ratio of angular momentums for the compounds. Our model calculations reveal that Lz/Sz is determined by the exchange splitting, spin-orbital coupling as well as the state of shell filling. Our model is well corroborated by the experiments and density-functional calculations.  相似文献   

8.
Epitaxial films of ZnO doped with magnetic ion Fe and, in some cases, with 1% Al show clear evidence of room temperature ferromagnetic ordering. The Al doped optimized samples with carrier concentration nc∼8.0×1020 cm−3 show about 3 times enhanced saturation magnetization (0.58 μB/Fe2+) than the one with nc∼3.0×1020 cm−3 (0.18 μB/Fe2+). A clear correlation between the magnetization per transition metal ion and the ratio of the number of carriers to the number of donors have been found as is expected for carrier-induced room temperature ferromagnetism. The transport mechanism of the electrons in all the DMS films at low temperature range has been identified with the Efros's variable range hopping due to the electron-electron Coulomb interaction.  相似文献   

9.
《Physics letters. A》2019,383(24):3018-3024
In this paper, we have investigated optoelectronic properties of two-dimensional GaN adsorbed with non-metal atoms: H, N and O based on first-principle. We find that adsorption of H, N and O atom on 2D GaN is achieved by chemisorption, and the most stable adsorption site is at the top of N atom. Band structure of 2D GaN after adsorbing H atom moves to low energy region and two-dimensional GaN is transformed into an n-type semiconductor. After adsorption of N atom, a new impurity energy appears at the Fermi level, and N adatom could induce magnetism into 2D GaN. Static dielectric constants of 2D GaN increase and adsorption spectrums have extend to infrared band when adsorbing H and N. Strong reflection peaks and strong adsorption peaks after adsorption are located at deep ultraviolet range, which is beneficial for optoelectronic application in the deep ultraviolet. Specifically, two-dimensional GaN adsorbed with H atom is more conducive to manufacture of nano-optoelectronic devices.  相似文献   

10.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of ZnO:Cu. The results indicate that Cu-doped ZnO prefers a ferromagnetic ground state and behaves like a half-metallic ferromagnet. The magnetic moment mainly localizes at Cu atom and the rest mainly comes from the spin polarized O atoms. It has been found that the ferromagnetic stability can be enhanced slightly by substituting an oxygen atom with one N atom; while the ferromagnetic stability can be weakened by replacing one O atom with a C atom. Due to absence of magnetic ion and the 100% spin polarization of the carriers in ZnO:Cu, one can expect that Cu-doped ZnO would be a useful half-metallic ferromagnet both in practical application and in theoretical studies.  相似文献   

11.
侯振桃  李彦如  刘何燕  代学芳  刘国栋  刘彩池  李英 《物理学报》2016,65(12):127102-127102
采用基于密度泛函理论的第一性原理结合投影缀加平面波的方法,研究了GaN中Ga被稀土元素Gd替代以及与邻近N或Ga空位组成的缺陷复合体的晶格常数、磁矩、形成能以及电子结构等性质.结果发现,Gd掺杂GaN后禁带宽度变窄,由直接带隙半导体转为间接带隙半导体;单个Gd原子掺杂给体系引入大约7μB的磁矩;在Gd与Ga或N空位形成的缺陷复合体系中,N空位对引入磁矩贡献很小,大约0.1μB,Ga空位能引入约2μB的磁矩.随着Ga空位的增多,体系总磁矩增加,但增加量与Ga空位的位置分布密切相关.当Ga空位分布较为稀疏时,Gd单原子磁矩受影响较小,但当Ga空位距离较近且倾向于形成团簇时,Gd单原子磁矩明显增加,而且这种情况下空位形成能也最小.  相似文献   

12.
In this study, we present the structural and magnetic characteristics of cobalt ions implantation at a high-fluence (5×1016 cm−2) into n-GaN epilayer of thickness about 1.6 μm. The n-GaN was grown on sapphire by metal organic chemical vapor deposition (MOCVD). Rutherford backscattering channeling was used for the structural study. After implantation, samples were annealed at 700, 800 and 900 °C by rapid thermal annealing in ambient N2. XRD measurements did not show any secondary phase or metal related-peaks. High resolution X-ray diffraction (HRXRD) was performed as well to characterize structures. Well-defined hysteresis loops were observed at 5 K and room temperature using alternating gradient magnetometer AGM and Superconducting Quantum Interference Device (SQUID) magnetometer. Temperature-dependent magnetization indicated magnetic moment at the lowest temperatures and retained magnetization up to 380 K for cobalt-ion-implanted samples.  相似文献   

13.
Interlayer exchange coupling (IEC) in a series model diluted magnetic semiconductor (DMS) multilayer consisting of two magnetic (Ga, Co)N layers separated by non-doped or Mg-doped GaN non-magnetic spacers has been studied by first-principles calculations. The effects of the spacer thickness and hole doping to the IEC were studied systematically. It is observed that (1) for the GaN spacers without Mg doping, the IEC between two magnetic (Ga, Co)N layers is always ferromagnetic, which is clarified as an intrinsic character of the Ruderman–Kittle–Kasuya–Yoshida (RKKY) interaction based on a two-band model for a gapped system; and (2) for the Mg-doped GaN spacers, the IEC is tunable from ferromagnetic to antiferromagnetic by varying the spacer’s thickness and the dopant’s site.  相似文献   

14.
Room temperature ferromagnetism in both transition-metals doped and undoped semiconductor thin films and nanostructures challenges our understanding of the magnetism in solids. In this report, we performed the magnetic measurement and Andreev reflection spectroscopy study on undoped Indium-Tin oxide (ITO) thin films and bulk samples. The magnetic measurement results of thin films show that the total magnetization/cm2 is thickness independent. Prominent ferromagnetism signal was also discovered in bulk samples. Spin polarized electron transports were probed on ITO thin film/superconductor interface and bulk samples surface/superconductor interface. Based on the magnetic measurement results and spin polarization measurement data, we propose that the ferromagnetism in this material originates from the surface spin polarization and this surface polarization may also explain the room temperature ferromagnetism discovered in other undoped oxide semiconductor thin films and nanostructures.  相似文献   

15.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO3晶体波态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO3晶体在不同压强下光学性质的折射率、反射率、吸收系数,能量损失函数以及光电导率. 研究发现:外界压强大于10Gpa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生“蓝移”.研究表明,高压可以有效调控LiNbO3晶体的电子结构和光学性质,为LiNbO3晶体的高压应用提供了有益的理论依据.  相似文献   

16.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO_3晶体态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO_3晶体在不同压强下光学性质的折射率、反射率、吸收函数,能量损失函数以及光电导率.研究发现:外界压强大于10GPa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生"蓝移".研究表明,外界高压可以有效调控LiNbO_3晶体的电子结构和光学性质,为LiNbO_3晶体的高压应用提供了有益的理论依据.  相似文献   

17.
Narrow-gap higher mobility semiconducting alloys In1-xMnxSb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In0.98Mn0.02Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2 K) within a cluster.  相似文献   

18.
Structural defects and their impact on the performance, lifetime and reliability of electronic devices are of permanent interest for crystal growers and device manufacturers. This is especially true for epitaxial (Al, Ga)N/GaN based high electron mobility transistor (HEMT) structures on 4H-SiC (0 0 0 1) substrates. This work points out how micropipes, dislocations and grain boundaries present in a 4H-SiC (0 0 0 1) wafer and subsequently overgrown with an (Al, Ga)N-GaN-HEMT layer sequence show up in X-ray topographic images and two-dimensional XRD maps. Using X-ray topography in transmission geometry, micropipes and other structural defects are localized non-destructively below structured metallization layers with a spatial resolution of a few tens of micrometers.  相似文献   

19.
基于密度泛函理论第一性原理的方法,计算了GaN、C单掺、Mg单掺和C-Mg共掺体系的电子结构和光学性质,计算结果表明:掺杂后,GaN体系的晶格发生畸变,有利于光生空穴-电子对的分离,C-Mg共掺体系结构最稳定,掺杂体系的禁带宽度均减小,其中C-Mg共掺体系的禁带宽度最小,在禁带中引入了杂质能级,说明掺杂可有效降低电子跃迁所需的能量.在光学性质方面,掺杂后,GaN在低能区介电峰和吸收峰均发生红移,且静介电常数增大;其中C-Mg共掺体系的对可见光的吸收最强,极化能力最强,因此C-Mg共掺将有望提高GaN在光催化性能和极化能力.  相似文献   

20.
本文用密度泛函理论的第一性原理,研究了C单掺、Al单掺、C-Al共掺GaN体系的电子结构及光学性质.通过分析发现,与本征GaN相比,掺杂后体系都发生了晶格畸变,其中C-Al共掺GaN体系,较容易形成且禁带宽度明显减小,形成了P型半导体,显著降低了电子跃迁所需要的能量;另外,该共掺体系的静介电常数最大,极化能力最强,介电虚部的主峰向低能区域偏移,并且吸收光谱在可见光范围内产生了红移现象,这都体现了C-Al共掺可以拓展GaN体系对可见光的响应范围.因此,C-Al共掺将有望提高GaN体系的光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号