首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

2.
We oxidized a Ni/Au metal bi-layer contact fabricated on HVPE Al0.18Ga0.82N from 373 K to 573 K in 100 K steps. In the range 1 kHz to 2 MHz, the Capacitance–Voltage–Frequency (C–V–f) measurements reveal a frequency dispersion of the capacitance and the presence of an anomalous peak at 0.4 V owing to the presence of interface states in the as deposited contact system. The dispersion was progressively removed by O2 anneals from temperatures as low as 373 K. These changes are accompanied by an improvement in the overall quality of the Schottky system: the ideality factor, n, improves from 2.09 to 1.26; the Schottky barrier height (SBH), determined by the Norde [1] method, increases from 0.72 eV to 1.54 eV. From the Nicollian and Goetzberger model [2], we calculated the energy distribution of the density of interface states, NSS. Around 1 eV above the Al0.18Ga0.82N valence band, NSS, decreases from 2.3×1012 eV−1 cm−2 for the un-annealed diodes to 1.3×1012 eV−1 cm−2 after the 573 K anneal. Our results suggest the formation of an insulating NiO leading to a MIS structure for the oxidized Au/Ni/Al0.18Ga0.82N contact.  相似文献   

3.
The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV.  相似文献   

4.
Copper indium disulphide (CuInS2) is an efficient absorber material for photovoltaic applications. In this work Zn (0.02 and 0.03 M) doped CuInS2 thin films are (Cu/In = 1.25) deposited onto glass substrates in the temperature range 300–400 °C. XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (1 1 2) preferred plane and other characteristic planes. Optical studies show, 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient in the UV–vis region is found to be in the order of 104–105 cm−1. Optical band gap energies increase with increase of temperatures (0.02 M – (1.93–2.05 eV) and 0.03 M – (1.94–2.04 eV)). Well defined, broad Blue and Green band emissions are exhibited. Resistivity study reveals the deposited films exhibit semiconducting nature. Zn species can be used as a donor and acceptor impurity in CuInS2 films to fabricate efficient solar cells and photovoltaic devices.  相似文献   

5.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

6.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

7.
The Y2O3:Eu3+,Mg2+,TiIV materials (xEu: 0.02, xMg: 0.08, xTi: 0.04) were prepared by solid state reaction. The purity and crystal structure of the material was studied with the X-ray powder diffraction. Luminescence properties were studied in the UV-VUV range with the aid of synchrotron radiation. The emission of Y2O3:Eu3+,Mg2+,TiIV had a maximum at 612 nm (λexc: 250 nm) due to the 5D07F2 transition of Eu3+. The excitation spectra (λem: 612 nm) showed a broad band at 233 nm, due to the charge transfer transition between O2− and Eu3+, and at 297 nm due to the Ti→Eu3+ energy transfer. Only very weak persistent luminescence was discovered. In the room and 10 K temperature excitation spectra, the line at 208 nm is due to the formation of a free exciton (FE) and a broad band at 199 nm was related to the valence-to-conduction band absorption of the Y2O3 host lattice. The absorption edge was ca. 205 nm giving 6.1 eV as the energy gap of Y2O3.  相似文献   

8.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

9.
The ternary semiconducting compound Cu2GeSe3 has been investigated for optical properties with photoacoustic spectroscopy. Optical absorption spectra of Cu2GeSe3 is obtained in the range of 0.76-0.81 eV photon-energy at temperatures between 80 and 300 K. The thermal variation of band gap energy has been examined from the optical absorption spectra at different temperatures. The temperature induced band gap shrinkage has been explained on the basis of electron-phonon interaction. Varshni's empirical relation in conjunction with Vina and Passler model is taken into consideration for data fitting. The Debye temperature was calculated approximately as 240 K. The acoustic phonons with a characteristic temperature as 160 K corresponding to effective mean frequency have been attributed to the thermal variation of the energy gap.  相似文献   

10.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

11.
Spectroscopic ellipsometry measurements on TlGaSe2, TlGaS2 and TlInS2 layered crystals were carried out on the layer-plane (0 0 1) surfaces, which are perpendicular to the optic axis c?, in the 1.2–6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were found as a result of analysis of ellipsometric data. The structures of critical points in the above-band gap energy range have been characterized from the second derivative spectra of the pseudodielectric function. The analysis revealed four, five and three interband transition structures with critical point energies 2.75, 3.13, 3.72 and 4.45 eV (TlGaSe2), 3.03, 3.24, 3.53, 4.20 and 4.83 eV (TlGaS2), and 3.50, 3.85 and 4.50 eV (TlInS2). For TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure.  相似文献   

12.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

13.
The indirect energy gap and electrical resistivity of FeS2-pyrite have been measured at high pressures and 300 K using optical absorption spectroscopy and electrical conductivity measurements. Absorption spectra extend to ∼28 GPa, while resistivity is determined to ∼34 GPa. The band gap of FeS2 is indirect throughout this pressure range and decreases linearly with pressure at a rate of −1.13(9)×10−2 eV/GPa. If this linear trend continues, FeS2 is expected to metallize at a pressure of 80(±8) GPa. The logarithm of resistivity also linearly decreases with pressure to 14 GPa with a slope of −0.101(±0.001)/GPa. However, between 14 and 34 GPa, the logarithm of resistivity is nearly constant, with a slope of −0.011(±0.003)/GPa. The measured resistivity of pyrite may be generated predominantly by extrinsic effects.  相似文献   

14.
The enhancement spectrum of the collision induced absorption of D2 in its fundamental band region 2600-4000 cm−1 in binary mixtures D2-Kr was studied at 298 K for base densities of D2 in the range 9-20 amagat and for partial densities of Kr in the range 7-120 amagat. The binary absorption coefficient of the band has been determined from the measured integrated absorption coefficient and found to be 3.9 × 10−3 cm−2 amagat−2. An analysis of the experimental spectrum was carried out by assuming appropriate line-shape functions and the half-width parameters δ1, δ2, δd and δc of the long range quadrupole, and of the short range overlap induced transitions have been determined. Good agreement was obtained between the recorded spectrum of the fundamental band and the synthetic profile.  相似文献   

15.
Electrical conductivity and fundamental absorption spectra of monocrystalline Cu7GeS5I were measured in the temperature ranges 95-370 and 77-373 K, respectively. A rather high electrical conductivity (σt=6.98×10−3Ω−1 cm−1 at 300 K) and low activation energy (ΔEa=0.183 eV) was found. The influence of different types of disordering on the Urbach absorption edge and electron-phonon interaction parameters were calculated, discussed and compared with the same parameters in Cu7GeS5I, Cu6PX5I (X=S,Se) and Ag7GeX5I (X=S,Se) compounds. We have concluded that the P→Ge and Cu→Ag cation substitution results in an increase of the electrical conductivity and a decrease of the activation energy. Besides, P→Ge substitution, results in complete smearing and disappearance of the exciton absorption bands and in blue shift of the Urbach absorption edge, an increase of the edge energy width and an electron-phonon-interaction enhancement.  相似文献   

16.
The structural, electronic and thermodynamic properties of cubic Zn3N2 under hydrostatic pressure up to 80 GPa are investigated using the local density approximation method with pseudopotentials of the ab initio norm-conserving full separable Troullier-Martin scheme in the frame of density functional theory. The structural parameters obtained at ambient pressure are in agreement with experimental data and other theoretical results. The change of bond lengths of two different types of Zn-N bond with pressure suggests that the tetrahedral Zn-N bond is slightly less compressible than the octahedral bond. By fitting the calculated band gap, the first and second order pressure coefficients for the direct band gap ofthe Zn3N2 were determined to be 1.18×10−2 eV/GPa and −2.4×10−4 eV/(GPa)2, respectively. Based on the Mulliken population analysis, Zn3N2 was found to have a higher covalent character with increasing pressure. As temperature increases, heat capacity, enthalpy, product of temperature and entropy increase, whereas the Debye temperature and free energy decrease. The present study leads to a better understanding of how Zn3N2 materials respond to compression.  相似文献   

17.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

18.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

19.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

20.
Glass samples of compositions xZnO-xCeO2-(30−x)PbO-(70−x)B2O3 with x varying from 2% to 10% mole fraction are prepared by the melt quench technique. The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV-visible spectroscopic measurement techniques. The FTIR spectral analysis indicates that with the addition of ZnO contents in glass network, structural units of BO3 are transformed into BO4. It has been observed in our previous work that band gap decreases from 2.89 to 2.30 eV for CeO2-PbO-B2O3 glasses with cerium content varying from 0% to 10% [Gurinder Pal Singh, Davinder Paul Singh, Physica B 406(3) (2011) 640-644]. With the incorporation of zinc in CeO2-PbO-B2O3 glasses, the optical band gap energy decreases further from 2.38 to 2.03 eV. This causes more compaction of the borate network, which results in an increase of density (3.39-4.02 g/cm3). Transmittance shows that ZnO in glass samples acts as a reducing agent thathelps to convert Ce4+→Ce3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号