首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria of genus Bacillus are active producers of extracellular proteases, and characteristics of enzyme production by Bacillus species have been well studied. The aim of this experimental study is isolation and partial purification of protease enzyme from the Bacillus subtilis megatherium bacteria species. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species on suitable media. The partial purification was reali-zed by applying successively ammonium sulfate precipitation, dialysis, DEAE-cellulose ion exchange chromatography to the supernatant. In this study, the effect of substrate concentration, reaction time, the effect of inhibitor and activator on the optimum pH, optimum temperature, pH stability, and temperature stability was determined. Molecular weight of the obtained enzyme was investigated by SDS-PAGE. In this study, the specific activity of the supernatant, which was partially purified from Bacillus subtilis megatherium bacteria, was 10.4 U/mg, specific activity of supernatant was 13.5 U/mg after 80% ammonium sulfate fractionation. The final enzyme preparation was 1.1-fold purer than the crude homogenate. Molecular weight of the protease was determined, and it was found that the weight of enzyme was 45 kDa by using SDS-PAGE.  相似文献   

2.
The filamentous fungus Sclerotinia sclerotiorum prudces ß-glucosidases in liquid culture with a variety of carbon sources, including cellulose (filter paper), xylan, barley straw, oat meal, and xylose. Analysis by native polyacrylamide gel electrophoresis (PAGE) followed by an activity staining with the specific chromogenic substrate, 5-bromo 4-chloro 3-indolyl ß-1,4 glucoside (X-glu) showed that two extracellular β-glucosidases, designated as ß-glul1 and \-glu2, were in the filter paper culture filtrate. Only one enzyme designated as ß-glus was revealed by the same method in the xylose culture filtrate. ß-glu1 and ß-glu2 were purified to homogeneity. The purification procedure consist of a common step of anion-exchange chromatography on DEAE-Sepharose CL6B, both high-performance liquid chromatography (HPLC) anion-exchange and gel filtration columns for ß-glu1 and only HPLC gel filtration for ß-glu2. ß-glu1 has a molecular mass of 196 kDa and 96.5 kDa, as estimated by gel filtration and sodium dodecyl sulfate (SDS)-PAGE, respectively, suggesting that the native enzyme may consist of two identical subunits. The same analysis showed that ß-glu2 is a monomeric protein with an apparent molecular mass of about 76.5 kDa. ß-glu1 and ß-glu2 hydrolyses PNPG1c and cellobiose, with apparent K m values respectively for PNPGlc and cellobiose of 0.1 and 1.9 mM for ß-glu1 and 2.8 and 8 mM for ß-glu2. Both enzymes exhibit the same temperature and pH optima for PNPG1c hydrolysis (60°C and pH 5.0). ß-glu1 was stable over a pH range of 3–8 and kept 50% of its activity after 30 min of heating at 60°C without substrate. It was further characterized by studying the effect of some cations and various reagents on its activity.  相似文献   

3.
Putrescine oxidase ([PO]; E.C. 1.4.3.4), which catalyzes the oxidative deamination of putrescine into γ-aminobutyraldehyde, has been partially purified from Candida guilliermondii. Among the substrates tested, putrescine has the highest reaction rate, followed by spermidine and cadaverine. The K IN values for putrescine, spermidine, and cadaverine were 20, 200, and 1.1 mM, respectively. The optimum pH and the temperature for PO were 8.0 and 37°C, respectively. Growth of Candida species on putrescine as the solenitrogen source induced the synthesis of PO that converts putrescine into Δ1-pyrroline and γ-aminobutyric acid. These two products were detected and identified from the culture medium. The enzyme was not activated by divalent cations. Among the species of Candida tested, the highest enzyme activity was found in cell-free extracts of C. guilliermondii. The pathway of putrescine degradation was identified by substrate analysis to be along the nonacetylated pathway in C. guilliermondii.  相似文献   

4.
An extracellular xylanase produced by a Mexican Aspergillus strain was purified and characterized. Aspergillus sp. FP-470 was able to grow and produce extracellular xylanases on birchwood xylan, oat spelt xylan, wheat straw, and corncob, with higher production observed on corncob. The strain also produced enzymes with cellulase, amylase, and pectinase activities on this substrate. A 22-kDa endoxylanase was purified 30-fold. Optimum temperature and pH were 60°C and 5.5, respectively, and isoelectric point was 9.0. The enzyme has good stability from pH 5.0 to 10.0 retaining >80% of its original activity within this range. Half-lives of 150 min at 50°C and 6.5 min at 60°C were found. K m and activation energy values were 3.8 mg/mL and 26 kJ/mol, respectively, using birch wood xylan as substrate. The enzyme showed a higher affinity for 4-O-methyl-d-glucuronoxylan with a K m of 1.9 mg/mL. The enzyme displayed no activity toward other polysaccharides, including cellulose. Baking trials were conducted using the crude filtrate and purified enzyme. Addition of both preparations improved bread volume. However, addition of purified endoxylanase caused a 30% increase in volume over the crude extract.  相似文献   

5.
Applied Biochemistry and Biotechnology - The products secreted byPseudomonas cellulosa were examined to determine if this bacterium could be used in a fluidized-bed bioreactor system to produce...  相似文献   

6.
The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K m and V max values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0–10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75°C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50°C and 60°C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.  相似文献   

7.
Two endoglucanases (EGs), EG A and EG B, were purified to homogeneity from Penicillium occitanis mutant Pol 6 culture medium. The molecular weights of EG A and EG B were 31,000 and 28,000 kDa, respectively. The pI was about 3 for EG A and 7.5 for EG B. Optimal activity was obtained at pH 3.5 for both endoglucanases. Optimal temperature for enzyme activity was 60 degrees C for EG A and 50 degrees C for EG B. EG A was thermostable at 60 degrees C and remained active after 1 h at 70 degrees C. EGs hydrolyzed carboxymethylcellulose, phosphoric acid swollen cellulose, and beta-glucan efficiently, whereas microcrystalline cellulose (Avicel) and laminarin were poorly hydrolyzed. Only EG B showed xylanase activity. Furthermore, these EGs were insensitive to the action of glucose and cellobiose but were inhibited by the divalent cations Hg2+, Co2+, and Mn2+.  相似文献   

8.
Stabilization of proteases by entrapment in a new composite hydrogel   总被引:3,自引:0,他引:3  
A new one-step procedure for entrapping proteases into a polymeric composite calcium alginate-poly(N-vinyl caproladam) hydrogel was developed that provided 75–90% retention of the activity of entrapped enzymes compared to soluble ones. Properties of entrapped carboxypeptidase B, trypsin, and thrombin were investigated. The immobilized enzymes were active within a wide pH range. The temperature optima of entrapped trypsin and carboxypeptidase B were approx 25°C higher than that of the soluble enzymes, and the resistance to heating was also increased. The effects of various polar and nonpolar organic solvents on the entrapped proteases were investigated. The immobilized enzymes retained their activity within a wide concentration range (up to 90%) of organic solvents. Gel-entrapped trypsin and carboxypeptidase (CPB) were successfully used for obtaining human insulin from recombinant proinsulin. The developed stabilization method can be used to catalyze various reactions proceeding within wide pH and temperature ranges.  相似文献   

9.
The application of nanoscale materials and structures, usually ranging from 1 to 100 nanometers (nm), is an emerging area of nanoscience and nanotechnology. Nanomaterials may provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water-treatment. The development of techniques for the controlled synthesis of nanoparticles of well-defined size, shape and composition, to be used in the biomedical field and areas such as optics and electronics, has become a big challenge. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use ‘natural factories’ such as biological systems. This study reports the optimal conditions for maximum synthesis of silver nanoparticles (AgNPs) through reduction of Ag+ ions by the culture supernatant of Escherichia coli. The synthesized silver nanoparticles were purified by using sucrose density gradient centrifugation. The purified sample was further characterized by UV–vis spectra, fluorescence spectroscopy and TEM. The purified solution yielded the maximum absorbance peak at 420 nm and the TEM characterization showed a uniform distribution of nanoparticles, with an average size of 50 nm. X-ray diffraction (XRD) spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. The size-distribution of nanoparticles was determined using a particle-size analyzer and the average particle size was found to be 50 nm. This study also demonstrates that particle size could be controlled by varying the parameters such as temperature, pH and concentration of AgNO3.  相似文献   

10.
Summary. Methacrylic acid-d5 was prepared in a yield of 30% with 98.6% deuterium incorporation using a two step synthesis. A solution of acetone-d6 and KCN in D2O was treated with glacial acetic acid to give the cyanohydrin of acetone-d6. The latter compound was then dehydrated in anhydrous sulfuric acid at 120°C and subsequently hydrolysed in water at 90°C to form methacrylic acid-d5. Hydrolysis of commercial nonaethyleneglycol dimethacrylate gave a mixture of ethylene glycols. These glycols were combined with methacrylic acid-d5 in the presence of p-TsOH in benzene to form nonaethyleneglycol dimethacrylate-d10 with ∼21% deuterium incorporation. Deuterated bisGMA was also prepared from methacrylic acid-d5 and diglycidyl ether of bisphenol-A. Present address: Boron Molecular Pty Ltd, PO Box 756, Noble Park, VIC 3174, Australia  相似文献   

11.
Pseudomonas fluorescens (strain BTP9) was found to have at least two NAD(P)-dependent vanillin dehydrogenases: one is induced by vanillin, and the other is constitutive. The constitutive enzyme was purified by ammonium sulfate fractionation, gel-filtration, and Q-Sepharose chromatography. The subunit Mr value was 55,000, determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native M r value estimated by gelfiltration chromatography gave a value of 210,000. The enzyme made use of NAD+ less effectively than NADP+. Benzaldehyde, 4-hydroxybenzaldehyde, hexanal, and acetaldehyde were not oxidized at detectable rates in the presence of NAD+ or NADP+. The ultraviolet absorption spectrum indicated that there is no cofactor or prosthetic group bound. The vanillin oxidation reaction was essentially irreversible. The pH optimum was 9.5 and the pI of the enzyme was 4.9. Enzyme activity was not affected when assayed in the presence of salts, except FeCl2. The enzyme was inhibited by the thiol-blocking reagents 4-chloromercuribenzoate and N-ethylmaleimide. NAD+ and NADP+ protected the enzyme against such a type of inhibition along with vanillin to a lesser extent. The enzyme exhibited esterase activity with 4-nitrophenyl acetate as substrate and was activated by low concentrations of NAD+ or NADP+. We compared the properties of the enzyme with those of some well-characterized microbial benzaldehyde dehydrogenases.  相似文献   

12.
An extracellular lipase was purified from the fermentation broth of Bacillus coagulans ZJU318 by CM-Sepharose chromatography, followed by Sephacryl S-200 chromatography. The lipase was purified 14.7-fold with 18% recovery and a specific activity of 141.1 U/mg. The molecular weight of the homogeneous enzyme was (32 kDa), determined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The enzyme activity was maximum at pH 9.0 and was stable over a pH range of 7.0–10.0, and the optimum temperature for the enzyme reaction was 45°C. Little activity loss (6.2%) was observed after 1 h of incubation at 40°C. However, the stability of the lipase decreased sharply at 50 and 60°C. The enzyme activity was strongly inhibited by Ag+ and Cu2+, whereas EDTA caused no inhibition. SDS, Brij 30, and Tween-80 inhibited lipase, whereas Triton X-100 did not significantly inhibit lipase activity.  相似文献   

13.
Interleukin (IL)-2 is a pharmacologically important cytokine secreted by T-lymphocytes. Recombinant IL-2 (rIL-2) has been modified and produced in many systems. Mass production of rIL-2 is the prerequisite for its wide application. Using a site-directed mutagenesis strategy, we first generated a gene coding for a new type of mutant of human IL-2 (MhIL-2), in which we replaced the cysteine-125 in human IL-2 with alanine, the leucine-18 with methionine, and the leucine-19 with serine. Then we investigated the possibility of its production of MhIL-2 in a Pichia pastoris system. High-level secreted expression of MhIL-2 was achieved by methanol induction. When purified with ultrafiltration, cation-exchange chromatography, and Sephadex G100 gel filtration, about 100 mg of MhIL-2 with high purity was obtained from 1 L of ferment supernatant. Biologic activity assay revealed that the purified recombinant protein displayed increased activity on proliferation of IL-2-dependent CTLL-2 cells. These results suggest that MhIL-2 is an improved IL-2 mutant that might hold great promise for clinical use, and that P. pastoris is an excellent system for the mass production of biologically active hIL-2.  相似文献   

14.
15.
A large-scale process was developed to purify gram quantities of a therapeutic enzyme,L-asparaginase, from submerged cultures ofErwinia carotovora. Cells were harvested from 150 L of fermentation broth and washed. A cellular acetone powder was prepared and extracted with pH 9.5 borate buffer. After continuous centrifugation and filtration to remove cell debris, the acetone powder extract was adjusted to pH 7.7 and adsorbed onto a 16-L CM-Sepharose Fast Flow column, with a precolumn packed with Cell Debris Remover. The enzyme was desorbed from the catin-exchange column at pH 9.0 and further purified with an affinity column ofl-asparagine Sepharose CL-4B. After dialysis-concentration to remove buffer salt, the enzyme was depyrogenated, formulated, sterile filled, and lyophilized as a single-dose final product. the final-product evaluation included analysis of the content of protein, sodium chloride, glycine, sodium, glucose hydrate, phosphate, and endotoxin, as well as reconstitution, potency, pH, specific activity, uniformity of fill, and sterility. The product was further subjected to visual examination, sodium dodecyl sulfate polyacrylamide gel electrophoresis, native gel electrophoresis, isoelectric focusing, amino acid analysis,N-terminal sequencing, peptide mapping, and immunological comparison.  相似文献   

16.
To facilitate structural studies of receptor-interacting protein 3 (RIP3), we developed a large-scale expression system of a glutathione-S-transferase (GST) fused with an 82 amino acid RIP3 protein inEscherichia coli. RIP3 truncation was subcloned into the pGEX-4T-1 vector and overexpressed in BL21(DE3)RIL cells. The soluble RIP3 protein was successfully purified to homogeneity using GST tag, an anion-exchange column, and gel filtration chromatography. The purity, identity, and conformation of the RIP3 protein were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, matrix-assisted laser desorption ionization mass spectrometry, circular dichroism, and fluorescence spectroscopic studies. RIP3 showed dominance of the α-helix structure and temperature-dependent conformational change.  相似文献   

17.
An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergerts. The protease purified and characterized in this study was found to be saperior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anionexchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be amonomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50°C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzme significantly.  相似文献   

18.
Alkaline thiol protease named Prot 1 was isolated from a culture filtrate ofBotrytis cinerea. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. Thus, the enzyme was purified to homogeneity with specific activity of 30-fold higher than that of the crude broth. The purified alkaline protease has an apparent molecular mass of 43 kDa under denaturing conditions as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular mass (45 kDa), determined by gel filtration, indicated that the alkaline protease has a monomeric form. The purified protease was biochemically characterized. The enzyme is active at alkaline pH and has a suitable and high thermostability. The optimal pH and temperature for activity were 9.0–10.0 and 60°C, respectively. This protease was stable between pH 5.0 and 12.0. The enzyme retained 85% of its activity by treatment at 50°C over 120 min; it maintained 50% of activity after 60 min of heating at 60°C. Furthermore, the protease retained almost complete activity after 4 wk storage at 25°C. The activity was significantly affected by thiol protease inhibitors, suggesting that the enzyme belongs to the alkaline thiol protease family. With the aim on industrial applications, we focused on studying the stability of the protease in several conditions. Prot 1 activity was not affected by ionic strength and different detergent additives, and, thus, the protease shows remarkable properties as a biodetergent catalyst.  相似文献   

19.
The metalloproteinase MP belongs to the serralysin family, which is involved in important functions such as nutrient acquisition and infection pathogenesis. Serralysin proteases in highly purified form are commonly used at the industrial level with several purposes. In this study, we set up an efficient and rapid purification protocol for MP using a p‐aminobenzamidine‐modified affinity chromatography. The affinity medium was synthesized by using p‐aminobenzamidine as affinity ligand immobilized via cyanuric chloride spacer to Sepharose 6B sorbent carrier. According to the adsorption analysis, the dissociation constant K d and theoretical maximum adsorption Q max of this medium were 24.2 μg/mL and 24.1 mg/g wet sorbent, respectively. The purity of MP was assessed by a high‐performance liquid chromatography on a TSK3000SW column and sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealing values of 98.7 and ∼98%, respectively. The specific activity of purified MP was 95.6 U/mg, which is similar to values obtained through traditional purification protocols. In conclusion, our protocol could be easily employed for the rapid isolation of MP with high purity, and could be implemented for other serralysin family proteases.  相似文献   

20.
A water-soluble polysaccharide (CPS-0) was obtained from the root of Cudrania tricuspidata (Carr.) Bur., by hot water extraction (70°C), deproteination using enzymolysis and Sevag method, precipitation with ethanol, and fractionation through DEAE-Sephadex A-50 chromatography. The purity of CPS-0 was determined by HPLC and the structure was elucidated by monosaccharide composition analysis, methylation analysis, GC, GC-MS, NMR spectral (1H-NMR, 13C-NMR, HMQC), UV, IR, and elemental analysis. The CPS-0 was found to contain glucose residues only. The average repeating unit is a decasaccharide having a backbone consisting of 1,4-linked α-D-glucopyranosyl residues to which the side chain consisting of terminal and 1,4-linked α-D-glucopyranosyl residues was attached at position 6 of the branching residues. __________ Translated from Chemical Journal of Chinese Universities, 2007, 28(6): 1088–1091 [译自: 高等学校化学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号