首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present work, the interaction between non-gray radiation and forced convection in a laminar radiating gas flow over a recess including two backward and forward facing steps in a duct is investigated numerically. Distributions of absorption coefficients across the spectrum (50 cm?1 < η < 20,000 cm?1) are obtained from the HITRAN2008 database. The full-spectrum k-distribution method is used to account for non-gray radiation properties, while the gray radiation calculations are carried out using the Planck mean absorption coefficient. To find the divergence of radiative heat flux distribution, the radiative transfer equation is solved by the discrete ordinates method. The effects of radiation–conduction parameter, wall emissivity, scattering coefficient and recess length on heat transfer behaviors of the convection–radiation system are investigated for both gray and non-gray mediums. In addition, the results of gray medium are compared with non-gray results in order to judge if the differences between these two approaches are significant enough to justify the usage of non-gray models. Results show that for air mixture with 10 % CO2 and 20 % H2O, use of gray model for the radiative properties may cause significant errors and should be avoided.  相似文献   

2.
This paper is devoted to transient heat transfer involving radiation and conduction. Considering a non-gray purely absorbing media, the radiative heat transfer equation (RTE) is solved iteratively with the Discrete Ordinates Method (DOM) using an exponential differencing scheme. The energy balance equation is used to compute temperature at each time step with the Crank–Nicholson technique. Energy equation is coupled to the RTE through the radiative source term. Both equations are discretized with finite differencing schemes. The energy conservation leads to the sparse system of linear equations A× T=B which is solved with a bi-conjugate stabilized gradient technique (BCSG). Validation of the model with different test cases is achieved and application to transient heating of glass is also studied.  相似文献   

3.
 This paper deals with a numerical study of combined convective and radiative heat transfer in a three-dimensional rectangular duct with hydrodynamically and thermally developing laminar flow. The gas is assumed to be an incompressible, absorbing, emitting, isotropically scattering, gray medium. Isothermal, gray, diffuse boundary walls at different temperatures are assumed. The finite-volume method (FVM) is adopted to describe both convective and radiative heat transfer. The coupled continuity and momentum equations are solved by means of SIMPLER algorithm. Numerical results for the radiative flux show very good agreement with the available data. The effects of aspect ratio, optical thickness, scattering albedo and wall emissivity on the mean bulk temperature are also investigated. By splitting the heat flux into convective and radiative contributions, the relative importance of these components is assessed for a typical range of values of the parameters. Received on 9 February 1999  相似文献   

4.
This paper study systematic investigates the combined conductive and non-gray radiative heat transfer of open cell polyurethane (PU) foam in the pressure range between 760 and 0.02 Torr. Direct transmission measurements are also taken using Fourier transform infrared (FTIR) spectrometer. In doing so, experimental results are obtained for the spectral extinction coefficient from 2.5 to 25 μm. In addition, the P-3 approximation method along with the box model is employed to calculate the non-gray radiative heat flux. The diffusion approximation method is also applied to calculated the radiative conductivity. Also tested herein are three samples with different cell sizes ranging from 330 to 147 μm. According to those results, the spectral extinction coefficient increases with a decrease of cell size, leading to a decrease of thermal conductivity. Moreover, evacuating the gases in the foam cells can reduce the thermal conductivity of the PU foam by as much as 75%. Furthermore, radiative heat transfer accounts for about 4% of total heat transfer at 760 Torr and increases to 20% at 0.02 Torr. Received on 20 April 1998  相似文献   

5.
Analyses are presented for infrared radiative energy transfer in gases when other modes of energy transfer simultaneously occur. Fully developed laminar flow of an absorbing emitting gas in a circular tube is considered under the conditions of uniform wall heat flux. Nongray as well as gray formulations are presented, and results are obtained for illustrative cases. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. The influence of variable wall emittance (gray and nongray) upon radiative energy transfer in nongray gases is investigated. In particular, nongray results are obtained, in the large path length limit, for the flow of CO2 through stainless steel tubes of various compositions. Finally, a correlation is presented which can be utilized to extend all nongray results for the parallel plate geometry, already available in literature, to yield results for the corresponding case of a circular tube. This work was supported by the National Science Foundation through Grant No. GK-16755.  相似文献   

6.
The paper presents analytical and experimental investigations of influence of radiative heat transfer on complex heat exchange during flow of optically active gas inside a pipe of diffusegrey properties. It was assumed that the pipe is heated from the outside by a constant heat flux and gas flowing inside is both absorbing and emitting and of small optical density. The influence of length and radiative properties of the pipe surface and of the gas temperature distribution on the wall and in the gas were analysed. The influence of radiative energy transfer on overall heat transfer coefficient was estimated. Mathematical model of radiative convective heat exchange in a system of one-dimensional temperature field, based on zone division method of Hottel and surface transformation, was verified numerically and experimentally. The results of numerical calculations were compared with experimental results obtained during carbone dioxide (CO2) flow inside electrically heated ceramic tube. The set of nonlinear differential equations was solved by Runge-Kutta method with Hamming modification and with the use of separable-kernel method.  相似文献   

7.
The present paper discusses the problem of composite heat transfer and viscous friction of a moving gray medium with large optical density. Expressions for temperature and velocity distributions and the ratio of the radiative component to convective component of heat flux are obtained. It is observed that for a given value ofB the ratio of radiative heat flux to convective heat flux is maximum at the edge of the boundary layer and tends to an asymptotic value as the boundary is reached. However, for a given value ofK δ, the ratio of heat fluxes increases with increase inB (the porous parameter). The results also show that as the wall temperature approaches the value of free stream temperature, the ratio of heat fluxes decreases.  相似文献   

8.
MHD mixed free-forced heat and mass convective steady incompressible laminar boundary layer flow of a gray optically thick electrically conducting viscous fluid past a semi-infinite inclined plate for high temperature and concentration differences is studied. A uniform magnetic field is applied perpendicular to the plate. The density of the fluid is assumed to reduce exponentially with temperature and concentration. The usual Boussinesq approximation is neglected due to the high temperature and concentration differences between the plate and the ambient fluid. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The boundary layer equations governing the flow are reduced to ordinary differential equations, which are numerically solved by applying an efficient technique. The effects of the density/temperature parameter n, the density/concentration parameter m, the local magnetic parameter Mx and the radiation parameter R are examined on the velocity, temperature and concentration distributions as well as the coefficients of skin-friction, heat flux and mass flux.  相似文献   

9.
C. Aghanajafi  A. Abjadpour 《Meccanica》2013,48(5):1127-1138
In this paper a new model and computer code is presented by considering singular and discontinuous heat flow divergence. A hybrid model including Smith’s WSGG model and Coppale and Vervish’s model is used for calculating gas radiative properties. Energy equation is solved simultaneously to reach temperature field which specify gas radiative properties. S 8 order of discrete ordinate method is used to solve RTE. It is assumed that walls of enclosure are gray, diffuse and opaque with specified temperature. Boundary conditions are corrected in each iteration that change temperature field.  相似文献   

10.
Oxy-fuel combustion is a promising alternative for power generation with CO2 capture, where the fuel is burned in an atmosphere enriched with oxygen and CO2 is used as a diluent. This type of combustion is characterised by uncommon characteristics in terms of thermal heat transfer budget as compared to air supported systems. The study presents experimental results of radiative heat flux along the flame axis and radiant fractions of non-premixed jet methane flames developing in oxy-fuel environments with oxygen concentrations ranging from 35% to 70%, as well as in air. The flames investigated have inlet Reynolds numbers from 468 to 2340. The data collected have highlighted the effects of the flame structure and thermo-chemical properties of oxy-fuel combustion on the heat flux radiated by the flames. It was first observed that peak heat flux increases considerably with oxygen concentration. More generally the radiant fraction increases with both increasing Reynolds number in the laminar regime and oxygen concentration. It was found that despite a difference in flame temperature, the radiative characteristics of the flames (heat flux distributions and radiant fraction) in air were similar to those with 35% O2 in CO2. The radiative properties of flames in oxy-fuel atmosphere with CO2 as diluents appear to be dominated by the flame temperature.  相似文献   

11.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In the absence of automated and customized methods and tools, some of today’s existing methods for solving three-dimensional fracture problems require comprehensive finite element meshing, labor-intensive analysis and post-processing efforts. In this study, a tetrahedral enriched element method and related applications are presented that demonstrate employment of fully unstructured tetrahedral meshes for general mixed-mode three-dimensional fracture problems. As in the case of hexahedral enriched elements, the tetrahedral enriched elements also alleviate the needs of pre- and post-processing the finite element model, allowing direct computation of stress intensity factors in the solution phase. In addition, when tetrahedral enriched elements are used, the crack front region can also be meshed using unstructured elements allowing direct use of automatic free-meshing programs. The applications presented are plane-strain central crack problem, mode-I surface crack in a plate, inclined penny-shaped crack, edge-cracked bar under constant heat flux and lens-shaped crack embedded in a large elastic body. The results obtained are in good comparative agreement with those available in the literature. Thus, it is concluded that the enriched tetrahedral elements can be applied efficiently and accurately on a general three-dimensional fracture problem allowing usage of fully unstructured finite element meshes.  相似文献   

13.
Transient radiative heat transfer in chemical reacting media is examined for a non-isothermal, non-gray, absorbing, emitting, and Mie-scattering suspension of coal particles, whose radiative properties vary with time as the particles undergo shrinking by endothermic gasification. A numerical model that incorporates parallel filtered collision-based Monte Carlo ray tracing, finite volume method, and explicit Euler time integration scheme is formulated for solving the unsteady energy equation that couples the radiative heat flux with the chemical kinetics. Variation of radiative properties, attenuation characteristics, temperature profiles, and extent of the chemical reaction are reported as a function of time. It is found that radiation in the visible and near IR spectrum incident on a cloud of coal particles greater than 2.5m is more likely to be forward scattered than absorbed, but the opposite is true as the particles shrink below 1.3m. The medium becomes optically thinner as the particles shrink and this effect is more pronounced for smaller initial coal particles because these offer higher volume fraction to particle diameter ratio and, consequently, attain higher temperatures, reaction rates, and shrinking rates.
A. SteinfeldEmail: Phone: +41-1-6327929Fax: +41-1-6321065
  相似文献   

14.
A general formulation for radiative heat transfer calculations is presented, based on integrated quantities such as total emissivities and absorptivities. The procedure is intended particularly for combustion chamber applications of varying degree of complexity, the radiative active medium consisting of gases such as H2O and CO2 and of soot. First, some preliminary calculations are given for the often treated radiative equilibrium cases of plane parallel plates and infinite concentric cylinders. Then an example of a combustion chamber calculation is studied where the radiative heat transfer calculation is included in a system of partial differential equations describing momentum, heat and mass transfer with combustion.  相似文献   

15.
16.
17.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

18.
A non-equilibrium reacting flow methodology has been added to a conservative, monotonic, compressible flow solver to allow numerical simulations of gas detonations. This flow solver incorporates unstructured dynamically adaptive meshes with the Finite Element Method – Flux Corrected Transport (FEM-FCT) scheme, which has shown excellent predictive capability of various non-reacting compressible flows. A two-step induction parameter model was used to model the combustion of the gas phase coupled with an energy release equation which was simulated with a point implicit finite element scheme. This combustion model was then applied to a two-dimensional detonation test case of a hypothetical fuel:oxygen mixture. The detonation simulation yielded two transverse waves which continued to propagate. This feature and the detonation shock speed mean and fluctuations were found to be grid-independent based on a resolution of about twenty elements within the average induction length. The resolution was efficiently achieved with the unstructured dynamically adaptive finite elements, which were three orders of magnitude less in number then required for uniform discretization. Received 26 August 1996 / Accepted 31 March 1997  相似文献   

19.
Recently there has arisen increased interest in the study of radiative heat transfer between geometrically simple systems, both as autonomous problems and as elements of more complex problems.Problems of this kind have been treated by many authors [1–111 who have considered gray, diffusely emitting and absorbing boundaries and gray nonscattering media. In most cases these investigations were restricted either to the derivation of approximate formulas for the net radiative flux, without an exact analysis of the temperature distribution in the layer [5–7], or to numerical computation [1–4], In the latter case, with the exception of [8], which contains a numerical analysis for the case of optical symmetry, no attempt was made to analyze the effect of the optical properties of the boundaries on the temperature field in the layer.These papers can be divided into two groups according to the method of analysis used. The first group includes papers based on the integral equations of radiative transfer, with the corresponding integral analytical methods [1, 2], Similar in nature are [3, 4] which use the slab method, applicable to electrical-analog computation, as well as a recent paper [8] based on probability methods.The second group of papers [5–7] is based on the so-called differential methods. Of particular interest is [7], which develops these methods to an advanced degree. In several papers the problem of radiative transfer is analyzed in conjunction with more complex problems (cf., e.g. [10, 11]).In the present work we shall attempt to carry out an approximate analytical study of problems connected with radiative heat transfer in a plane layer of an absorbing, emitting, nonscattering gray medium with temperature-independent optical properties. The layer is bounded by two parallel, diffusely emitting and diffusely reflecting, isothermal, gray planes.The paper presents the fundamental formulation of the problem, which consists in: (a) the determination of the net heat flux on the basis of given temperature distribution (direct formulation), and (b) the determination of the temperature distribution on the basis of given distribution of the net radiative heat source per unit volume and boundary temperatures (inverse formulation). The analysis is based on integral methods appropriate to the integral equations which represent the net total and hemispherical radiation flux densities [12].The author would like to thank S. S. Kutateladze for his interest in this work.  相似文献   

20.
The heat transfer in absorbing, emitting, and anisotropically scattering boundary-layer flows with reflecting boundary over a flat plate, over a 90-deg wedge, and in stagnation flow is solved by application of the Galerkin method with the particular solution boundary condition I p 0,ξ,?μ) of the equation of radiative transfer for an inhomogeneous term and the Box method. The exact integral expressions for the radiation part of this problem are developed. The coupling between convective and radiative heat transfer in boundary-layer flows is described by a set of nonlinear simultaneous equations including differential equations and integrodifferential equations. The Galerkin method and the particular solution boundary condition I p 0,ξ,?μ) are used to analyze the radiation part of the problem. The nonsimilar boundary-layer equations are solved by the Box method. The present numerical procedure solutions are compared in tables with the other exact treating results, the P-3, and P-1 approximation methods for the case of isotropically scattering boundary-layer flows. The effects of linearly anistropically scattering and reflecting surface are taken into account. It is found that the present method is a reliable and efficient numerical procedure and scattering leads to a reduction in the total heat flux. The influence of the forward-backward scattering parameter on the total heat flux decreases with the increase of the surface reflectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号