首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple, sensitive high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) methods are developed for the quantitative estimation of rabeprazole and mosapride in their combined pharmaceutical dosage forms. In HPLC, rabeprazole and mosapride are chromatographed using 0.01M 6.5 pH ammonium acetate buffer-methanol-acetonitrile (40:20:40, v/v, pH 5.70+/-0.02) as the mobile phase at a flow rate of 1.0 mL/min. In TLC, the mobile phase is ethyl acetate-methanol-benzene (2:0.5:2.5, v/v). Both the drugs are scanned at 276 nm. The retention times of rabeprazole and mosapride are found to be 4.93+/-0.01 and 9.79+/-0.02, respectively. The Rf values of rabeprazole and mosapride are found to be 0.42+/-0.02 and 0.61+/-0.02, respectively. The linearities of rabeprazole and mosapride are in the range of 400-2000 ng/mL and 300-1500 ng/mL, respectively, for HPLC; in TLC, the linearities of rabeprazole and mosapride are in the range of 400-1200 ng/spot and 300-900 ng/spot, respectively. The limit of detection is found to be 97.7 ng/mL for rabeprazole and 97.6 ng/mL for mosapride in HPLC; in TLC the limit of detection is found to be 132.29 ng/spot for rabeprazole and 98.25 ng/spot for mosapride. The proposed methods can be applied to the determination of rabeprazole and mosapride in combined pharmaceutical products.  相似文献   

2.
Two sensitive and reproducible methods were developed and validated for the determination of ziprasidone (ZIP) in the presence of its degradation products in pure form and in pharmaceutical formulations. The fi rst method was based on reversed-phase high-performance liquid chromatography (HPLC), on a Lichrosorb RP C(18) column using water:acetonitrile:phosphoric acid (76:24:0.5 v/v/v) as the mobile phase at a fl ow rate of 1.5 mL min(-1) at ambient temperature. Quantification was achieved with UV detection at 229 nm over a concentration range of 10-500 micro g mL(-1) with mean percentage recovery of 99.71 +/- 0.55. The method retained its accuracy in presence of up to 90% of ZIP degradation products. The second method was based on TLC separation of ZIP from its degradation products followed by densitometric measurement of the intact drug spot at 247 nm. The separation was carried out on aluminium sheet of silica gel 60 F(254) using choloroform:methanol:glacial acetic acid (75:5:4.5 v/v/v) as the mobile phase, over a concentration range of 1-10 micro g per spot and mean percentage recovery of 99.26 +/- 0.39. Both methods were applied successfully to laboratory prepared mixtures and pharmaceutical capsules.  相似文献   

3.
A simple and sensitive thin-layer chromatographic (TLC)-densitometric method for the quantitative estimation of S(+)-2-[4-isobutylphenyl]propionic acid (ibuprofen) and its impurities in pharmaceutical preparations has been developed. The chromatographic separation was carried out on silica gel 60 F(254) TLC plates using toluene-ethyl acetate-glacial acetic acid (17:13: 1, v/v/v) as the mobile phase. Detection was carried out densitometrically with a UV detector. The developed method has detection and quantitation limits ranging from 0.13 μg per spot to 0.72 μg per spot. For individual constituents the recovery ranged from 96.8% to 99.0%. In addition, the stability of ibuprofen solutions was investigated, including the effect of pH, temperature, and incubation time. The method is rapid, simple, and suitable for routine quality-control analysis of pharmaceuticals containing ibuprofen.  相似文献   

4.
A simple, sensitive and precise high-performance thin-layer chromatographic (HPTLC) method of analysis of trans-resveratrol in Polygonum cuspidatum root extracts and in dosage forms was developed and validated. The separation was carried out on a TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase, eluted with chloroform-ethylacetate-formic acid (2.5 : 1 : 0.1) as mobile phase. Densitometric analysis of trans-resveratrol was carried out in the absorbance mode at 313 nm. This system was found to give compact spot for trans-resveratrol (Rf value of 0.40+/-0.03). A good linear regression relationship between peak areas and the concentrations was obtained over the range of 0.5-3.0 microg/spot with correlation coefficient 0.9989. The limit of detection and quantification was found to be 9 and 27 ng/spot. The method was validated for precision and recovery. The spike recoveries were within 99.85 to 100.70%. The RSD values of the precision in the range 0.37-1.84%. The proposed developed HPTLC method can be applied for identification and quantitative determination of trans-resveratrol in herbal extracts and dosage forms.  相似文献   

5.
Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.  相似文献   

6.
ABSTRACT: A TLC densitometric method was developed for simultaneous determination of four anabolic androgenic steroids (AAS) of testosterone derivatives including testosterone propionate (TP), testosterone phenyl propionate (TPP), testosterone isocaproate (TI) and testosterone deaconate (TD) in their pharmaceutical products. Separation was carried out on Al based TLC plates, pre-coated with silica gel 60F-254 using hexane and ethyl acetate (8.5:1.5, v/v). Spots at Rf 0.31+/-0.01, 0.34+/-0.01, 0.40+/-0.01 and 0.45+/-0.02 were recognized as TPP, TP, TI and TD, respectively. Quantitative analysis was done by densitometric measurements at lambdamax 251 nm for all derivatives. The developed method was validated as per ICH guidelines. Method was found linear over the concentration range of 200-1200 ng/spot with the correlation coefficient of 0.995, 0.993, 0.995 and 0.996 for TP, TPP, TI, TD, respectively. Limit of detection for all derivatives were in the range of 16.7-22.3 ng/spot while limit of quantitation were found to be in the range of 55.7-70.9 ng/spot. The developed TLC method can be applied for the simultaneous routine analysis of testosterone derivatives in their individual and combined pharmaceutical formulations.  相似文献   

7.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

8.
Different analytical tasks in the pharmaceutical analysis can be classified according to the separation problems into three main groups: trace analysis, assay methods and separation of closely related compounds including isomers. The most important requirements of high-performance liquid chromatographic (HPLC) methods with respect of the separation problems are summarized. Considerations and recommendations for the selection of the most applicable HPLC system to solve particular analytical problems are discussed. HPLC methods can be compared on the basis of the system resolution (SR) and system selectivity (SS). Criteria developed for the characterization of HPLC methods considering the difficulties created by the different analytical problems are established. The principles of the selection of the most applicable separation systems are demonstrated through some practical examples in pharmaceutical analysis.  相似文献   

9.
A quantitative densitometric thin-layer chromatographic method for determination of nefopam hydrochloride in pharmaceutical preparations has been established and validated. Nefopam from the formulations was separated and identified on silica gel 60 F254 TLC plates with chloroform-methanol-glacial acetic acid (9: 2: 0.1, v/v/v) as mobile phase. Densitometric quantification was performed at absorbance maximum 266 nm. The method was validated for linearity, sensitivity, precision and recovery in accordance with ICH guidelines. The presented method is selective and specific with potential application in pharmaceutical analysis. Nefopam hydrochloride was subjected to acidic and alkaline hydrolysis at different temperatures. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

10.
A simple and sensitive method for separation and quantitative determination of non-opioid analgesics from pharmaceutical preparations has been developed and validated. Commercial formulations of three non-opioid analgesics, viz. paracetamol, ibuprofen and diclofenac, were chosen for present studies. These were extracted, isolated, purified and recrystallized and were characterized by melting point, lambda(max) and IR. Quantitative determination was carried out using HPLC and TLC supplemented with UV spectrophotometry.  相似文献   

11.
A simple and accurate stability-indicating thin-layer chromatographic (TLC) method is developed and validated for the quantitative determination of ribavirin (RBV) in its bulk and with used for development consists of chloroform-methanol-acetic acid (60:15:15, v/v/v). The separated spots are visualized as bluish green spots after being sprayed with anisaldehyde reagent. RBV is subjected to different accelerated stress conditions. The drug is found to undergo degradation under all stress conditions, and the degradation products are well resolved from the pure drug with significantly different Rf values. The optical densities of the separated spots are found to be linear with the amount of RBV in the range of 5-40 microg/spot with a good correlation coefficient (r=0.9980). The limit of detection and limit of quantitation values are 1.40 and 4.67 microg/spot, respectively. Statistical analysis proves that the method is repeatable and accurate for the determination of RBV in the presence of its degradation products. The method meets the International Conference on Harmonisation/Food and Drug Administration regulatory requirements. The proposed TLC method is successfully applied for the determination of RBV, pure and in capsules, with good accuracy and precision; the label claim percentages are 98.8%+/-1.5%. The results obtained by the proposed TLC method are comparable with those obtained by the official method.  相似文献   

12.
Summary A high performance thin layer chromatographic method was developed for the determination of erythromycin. The drug was separated on a silica gel 60 plate and developed in methanol by means of an automatic multiple development. The chromatogram was sprayed with 10% sulphuric acid solution and heated at 100°C for 10–15 minutes. The area of the spot was quantified by a TLC scanner at a wavelength of 410 nm. A linear calibration curve was established over the range of 4–6 μg in 10μl of erythromycin. The relative standard deviation for five replicate determinations was found to be 1.45% for 5 μg in 10 μl of erythromycin standard. The average percentage recovery was found to be 99.87. The method has been applied to the determination of erythromycin in various pharmaceutical dosage forms. Common excipients in formulations do not interfere. After optimizing the solvent system, it was found that the use of silica gel 60 F254 TLC plate with a DVS composed of ethyl acetate, ethanol and 10% sodium acetate pH 9.5 (9:7:8) led to the differentiation and quantitation of erythromycins A, B and C with an R.S.D. of less than 2.0%. The method is simple, precise and inexpensive. It should be used for routine analysis.  相似文献   

13.
Marta Kucharska  Jan Grabka 《Talanta》2010,80(3):1045-749
The purpose of this work was to present a chromatographic methods to analyse synthetic food dyes. The following techniques has been described: thin-layer liquid chromatography (TLC), high performance thin-layer chromatography (HPTLC), traditional column chromatography, high performance liquid chromatography (HPLC), include: ion-pair chromatography (HPLC IP), reversed phase chromatography (RP HPLC) and high performance ion chromatography.  相似文献   

14.
Simple, accurate, precise, and sensitive ultraviolet spectrophotometric and reversed-phase high-performance liquid chromatographic (RP-HPLC) methods for simultaneous estimation of escitalopram oxalate (ESC) and clonazepam (CLO) in combined tablet dosage form have been developed and validated. The spectroscopic method employs an absorbance correction method using 238.6 and 308 nm as 2 wavelengths for estimation with methanol and water as solvents. Beer's law is obeyed in the concentration range of 10.0-50.0 and 0.5-3.0 micro/mL for ESC and CLO, respectively. The RP-HPLC method uses a Jasco HPLC system with HiQ SiL C18 column (250 x 4.6 mm id) acetonitrile-0.005 M tetrabutylammonium hydrogen sulfate (55 + 45, v/v) as the mobile phase, and satranidazole as an internal standard. The detection was carried out using an ultraviolet detector set at 287 nm. For the HPLC method, Beer's law is obeyed in the concentration range of 10.0-60.0 and 0.5-3.0 microg/mL for ESC and CLO, respectively. Both methods have been successfully applied for the analysis of the drugs in a pharmaceutical formulation. Results of analysis were validated statistically and by recovery studies.  相似文献   

15.
It is common practice in chromatographic purity analysis of pharmaceutical manufacturing processes to assess the quality of peak integration combined by visual investigation of the chromatogram. This traditional method of visual chromatographic comparison is simple, but is very subjective, laborious and seldom very quantitative. For high-purity drugs it would be particularly difficult to detect the occurrence of an unknown impurity co-eluting with the target compound, which is present in excess compared to any impurity. We hypothesize that this can be achieved through Multivariate Statistical Process Control (MSPC) based on principal component analysis (PCA) modeling. In order to obtain the lowest detection limit, different chromatographic data preprocessing methods such as time alignment, baseline correction and scaling are applied. Historical high performance liquid chromatography (HPLC) chromatograms from a biopharmaceutical in-process analysis are used to build a normal operation condition (NOC) PCA model. Chromatograms added simulated 0.1% impurities with varied resolutions are exposed to the NOC model and monitored with MSPC charts. This study demonstrates that MSPC based on PCA applied on chromatographic purity analysis is a powerful tool for monitoring subtle changes in the chromatographic pattern, providing clear diagnostics of subtly deviating chromatograms. The procedure described in this study can be implemented and operated as the HPLC analysis runs according to the process analytical technology (PAT) concept aiming for real-time release.  相似文献   

16.
A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE C18 column and a mobile phase composed of methanol-water (95 + 5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242-298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dlambda values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol-water (3 + 1, v/v). The linear ranges were 4.00-48.0 microg/mL for DIF and 50.0-400 microg/mL for ISO in the LC method, and 2.40-40.0 microg/mL for DIF and 60.0-260 microg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.  相似文献   

17.
Diphenylindenone sulphonyl (Dis) esters of trichothecene mycotoxins when sprayed with sodium methoxide showed fluorescent spots on a thin layer of silica gel when viewed under long-wavelength UV light. The detection limit for trichothecene esters in thin-layer chromatography (TLC) was 20-25 ng per spot for T-2 toxin, HT-2 toxin, diacetoxyscirpenol, T-2 triol, T-2 tetraol and iso-HT-2 toxin. A quantitative high-performance liquid chromatographic (HPLC) analysis of Dis-trichothecene esters was also developed using UV detection at 278 nm. The detection limit for the above esters varied between 30 and 50 ng per injection. This sensitive TLC-HPLC method is very useful for in vivo pharmacokinetic analyses of trichothecenes.  相似文献   

18.
Ornipressin is a peptide drug which is usually assayed by a test on live rats. In order to reduce the animal experiments an alternative method was developed which uses gradient high-performance liquid chromatography (HPLC) on reversed-phase. The HPLC method was validated and shown to be selective and precise. Correlation studies were performed on samples of different dosage strengths and on thermally degraded samples, showing good correlation with the results obtained by the biological assay. The HPLC method was applied on various batches of ornipressin in bulk and in pharmaceutical preparations. HPLC is a rapid and inexpensive method which can replace the animal assay. A new quality control concept is proposed which uses HPLC for the analysis of ornipressin in bulk and in pharmaceutical preparations. With this concept animal testing can be reduced by 90%.  相似文献   

19.
Three antihypertensive agents were extracted and isolated from commercial formulations. These were purified and characterized by melting point, lambdamax and IR. The percentage recovery by extraction process was in the range 81-91%. Active ingredients from binary formulations were separated by RP-HPLC using methanol-water (50:50 v/v) and by TLC using CHCl3-CH3OH (6:1) as mobile phase. Detection was by UV at 210 nm in HPLC, and by iodine vapors in TLC. The solvent conditions from TLC were transferred to open column chromatographic separation. Quantitative determination was carried out using TLC and column chromatography supplemented with UV spectrophotometry. Recovery was in the range 82-93%. Two combination of drugs, viz. amlodipine+ramipril and amlodipine+enalapril, were separated by the three modes of liquid chromatography. The percentage recovery was in the range 80-92% by open column.  相似文献   

20.
This paper describes validated high-performance liquid chromatographic (LC) and high-performance thin-layer chromatographic (TLC) methods for the simultaneous estimation of olanzapine and fluoxetine in pure powder and tablet formulations. The LC separation was achieved on a Lichrospher 100 RP-180, C18 column (250 mm, 4.0 mm id, 5 microm) using 0.05 M potassium dihydrogen phosphate buffer (pH 5.6 adjusted with o-phosphoric acid)-acetonitrile (50 + 50, v/v) as the mobile phase at a flow rate of 1 mL/min and ambient temperature. The TLC separation was achieved on aluminum sheets coated with silica gel 60F254 using methanol-toluene (40 + 20, v/v) as the mobile phase. Quantitation was achieved by measuring ultraviolet absorption at 233 nm over the concentration range of 10-70 and 40-280 microg/mL with mean recovery of 99.54 +/- 0.89 and 99.73 +/- 0.58% for olanzapine and fluoxetine, respectively, by the LC method. Quantitation was achieved by measuring ultraviolet absorption at 233 nm over the concentration range of 100-800 and 400-3200 ng/spot with mean recovery of 101.53 +/- 0.06 and 101.45 +/- 0.35% for olanzapine and fluoxetine, respectively, by the TLC method with densitometry. These methods are simple, precise, and sensitive, and they are applicable for simultaneous determination of olanzapine and fluoxetine in tablet formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号