首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurements have been made of the adhesive force and double electric charge of particles after their removal from a metal surface. For the systems investigated, the adhesive force and charge on the particles increase with particle diameter according to a power law with an exponent close to 2. Such dependence can be explained on the basis of the electrostatic nature of the adhesive forces. A double electric layer exists at the interface between the particles and the metal surface. A calculation was made of the surface density of charge for the polyvinyl chloride particle-steel system.  相似文献   

2.
We study the role of flexible spacers in specific adhesion from the point of view of polymer reaction--diffusion theory. By assuming that the interactions between complementary adhesion moieties occur on a length scale much smaller than the size of the polymer spacer, we describe in detail binding and rupture between two opposing surfaces. Predictions are given for the physical properties of interest such as the time evolution of bond density and the ranges of attraction and unbinding. We also discuss the dynamic crossover between reversible and irreversible bridging.  相似文献   

3.
The interactions between a receptor-modified planar surface and a surface grafted with a bimodal polymer layer, where one of the polymer species is ligand functionalized, are studied using a molecular theory. The effects of changing the binding energy of the ligand-receptor pair, the polymer surface coverage, the composition, and molecular weight of both the unfunctionalized and ligand functionalized polymers on the interactions between the surfaces are investigated. Our findings show that bridging exists between the surfaces including when the molecular weight of the ligand-bearing polymer is smaller than that of the unfunctionalized polymer, even though the ligand is initially buried within the polymer layer. The distance at which the surfaces bind depends only on the molecular weight of the ligand-modified polymer, while the strength of the interaction at a given surface separation can be tuned by changing the molecular weight of the polymers, the total polymer surface coverage, and the fraction of ligated polymers. The composition of the bimodal layer alters the structure of the polymer layer, thereby influencing the strength of the steric repulsions between the surfaces. Our theoretical results show good agreement with experimental data. The present theoretical study can be used as guidelines for the design of surfaces with tailored abilities for tunning the binding strength and surface-ligand separation distances for polymer-grafted surfaces bearing specific targeting ligands.  相似文献   

4.
According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process.  相似文献   

5.
Zirconium tetra(tert-butoxide) reacts with surface amide groups of polyamide nylon 6/6 to give (eta(2)-amidate)zirconium complexes in high yield. These surface complexes react to bond the cell-adhesive peptide arginine-glycine-aspartic acid (RGD) to the polymer surface. A surface loading of 0.18 nmol/cm(2) of RGD is achieved, which is 20-1000 times higher than previously reported attainable on natural or synthetic polymers by other strategies. Approximately 40% of the nylon surface is covered by the RGD, which gives a surface that is both stable to hydrolysis and highly active for cell adhesion and spreading in vitro.  相似文献   

6.
Interactions between hydrophobic chains of lipid monolayers and interactions between hydrophilic headgroups of lipid bilayers (with or without a molecular recognition step) are now well documented, especially for commonly used lipids. Here, we report force measurements between a new class of fluorinated lipid layers whose headgroups (synthetic ligands of retinoid receptors) display a very unusual polar/apolar character and can interact via a combination of hydrophobic forces and hydrogen bonds. Although these two interactions produce adhesion and are therefore not easily distinguishable, we show that it is possible to extract both contributions unambiguously. Experiments are performed both in pure water, where the adhesion is a combination of hydrophobic forces and hydrogen bonds, and in Tris buffer, where the hydrophobic effect is the dominant short-range attractive force. The contribution of hydrophobic forces scaled down to molecular interactions is deduced from force versus distance profiles, and the same value is found independently in pure water and Tris buffer, about 1 kBT. We also show that retinoid lipid layers attract each other through a very long-range (100 nm) exponential force, which is insensitive to the pH and the salinity. The origin of this long-range attraction is discussed on the basis of previously proposed mechanisms.  相似文献   

7.
We investigated a thermo-sensitive polymer, poly(N-isopropylacrylamide) (PNIPAAm), which is the basis of an HPLC stationary phase. We prepared a PNIPAAm terminally-modified surface. In this study, we investigated the effect of PNIPAAm on the surface of a stationary phase on separation based on changes of the retention time with the temperature step gradient. As the temperature changed the surface property of the stationary phase switched from hydrophilic to hydrophobic. The retention on the polymer-modified stationary phase remarkably changed upon changing the temperature. Using a column packed with PNIPAAm-modified silica, the separation of steroids was carried out by changing the temperature. With increasing temperature, an increased interaction between solutes and PNIPAAm-grafted surfaces of the stationary phases was observed. A temperature-dependent resolution of steroids was achieved using only water as a mobile phase. The PNIPAAm-modified surface of the stationary phase exhibited temperature-controlled hydrophilic-hydrophobic changes. The drastic and reversible surface hydrophilic-hydrophobic property alteration for PNIPAAm terminally-grafted surfaces should be due to rapid changes in the polymer hydration state around the polymer's transition temperature. A solvent gradient elution-like effect could be achieved with a single mobile phase by programmed temperature changes during chromatographic runs. This system should be highly useful to control the function and property of the stationary phase for HPLC only by changing the temperature with an aqueous solvent.  相似文献   

8.
The influence of the compatibility of plasticizers on the aggregated structure and the ion-conductive behavior of poly(ethylene oxide)/lithium methoxy di (ethyleneoxy) phenylsulfonate (EO2PSLi) complex were studied using two plasticizers with different polarity, γ-butyrolactone (BL) and 2,5-di(methyl diglycol)-1,4;3,6-dianhydrous sorbitol ether (DGS), a novel pincer-like plasticizer synthesized in this paper. The DGS can effectively destroy the PEO crystalline phase in PEO/EO2PSLi complex and increase the amorphous area in which Li+ cations transport, depending on polymeric segmental movement. However, in BL-plasticized PEO/EO2PSLi complex, the highly polar BL hardly disrupts PEO crystals and only forms a BL-rich phase, a kind of liquid electrolyte tunnel in which Li+ mainly transfers. Received: 2 September 1997 / Accepted: 14 January 1998  相似文献   

9.
A simple method for using the JKR model to determine interfacial adhesion between two ideal rough surfaces is demonstrated for individual asperity-asperity and asperity-flat contacts both in air and in water. The model takes into account the effect of a modified contact area at separation due to viscoelastic effects. The equilibrium version of the model significantly underestimates the measured adhesion, whereas the viscoelastic version of the model is much closer to the measured data. The asperity-flat geometry used with the viscoelastic version of the model seems to fit the experimental results best. This was thought to be due to the unlikely occurrence of direct asperity-asperity contacts. Instead, it would seem that the asperities have a far higher chance of fitting between each other on opposing surfaces, leading to correspondingly higher pull-off forces measured on separation. Many possible extensions to the roughness model described here may be made, allowing a much-improved understanding of the contact mechanics between two rough surfaces.  相似文献   

10.
Polyolefine surfaces have been pre-treated by UV/ozone and UV/water methods. The increase in polar groups on a polymer surface and the contribution of these polar groups to the adhesion of the polymer has been investigated by using contact angles and tensile strength tests. Because contact angle measurements do not give information about the specific polar groups on the surface we have used solvatochromic analyses to identify specific polar groups. The results showed that solvatochromic analyses is a promising method to discriminate between different kinds of polar groups and therefore solvatochromic surface characterisation may become an important surface analytical tool in adhesive technology.  相似文献   

11.
12.
Mechanism of adhesion between polymer fibers at nanoscale contacts   总被引:1,自引:0,他引:1  
Adhesive force exists between polymer nano/microfibers. An elaborate experiment was performed to investigate the adhesion between polymer nano/microfibers using a nanoforce tensile tester. Electrospun polycaprolactone (PCL) fibers with diameters ranging from 0.4-2.2 μm were studied. The response of surface property of electrospun fiber to the environmental conditions was tracked by FTIR and atomic force microscopy (AFM) measurements. The effect of temperature on molecular orientation was examined by wide angle X-ray diffraction (WAXD). The adhesive force was found to increase with temperature and pull-off speed but insensitive to the change of relative humidity, and the abrupt increase of adhesion energy with temperature accompanied by a reduced molecular orientation in the amorphous part of fiber was observed. Results show that adhesion is mainly driven by van der Waals interactions between interdiffusion chain segments across the interface.  相似文献   

13.
Group contribution methods can be used as an aid in evaluating contact angle data on modified polymer surfaces. Good correlation was seen between experimental contact angle titration data on a hydrolyzed polyimide surface and equations involving water-octanol partition coefficients using parameters derived from group contribution methods. The methods used captured features of the experimental contact angle titration data observed during ionization of surface functional groups.  相似文献   

14.
Successful blending of different polymers to make a structural or functional material requires overcoming limitations due to immiscibility and/or incompatibility that arise from large polymer-polymer interfacial tensions. In the case of latex blends, the combination of capillary adhesion during the blended dispersion drying stage with electrostatic adhesion in the final product is an effective strategy to avoid these limitations, which has been extended to a number of polymer blends and composites. This work shows that adhesion of polymer domains in blends made with natural rubber and synthetic latexes is enhanced by electrostatic adhesion that is in turn enhanced by ion migration, according to the results from scanning electric potential microscopy. The additional attractive force between domains improves blend stability and mechanical properties, broadening the possibilities and scope of latex blends, in consonance with the "green chemistry" paradigm. This novel approach based on electrostatic adhesion can be easily extended to multicomponent systems, including nonpolymers.  相似文献   

15.
The friction and adhesion properties of polystyrene surfaces are studied below the glass transition temperature by means of atomic force microscopy in argon. Even at a temperature far below the glass transition, the repeated sliding of a polystyrene bead tip on the non-cross-linked polystyrene surface causes significant reduction of friction and adhesion forces. There is no measurable wear of the polystyrene surface due to repeated sliding. These decreases are associated with the alignment of the outermost polymer segments induced by repeated rubbing. There are only little changes in friction and adhesion on the cross-linked polystyrene surface in which the covalent cross-linking prevents chain realignment.  相似文献   

16.
Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.  相似文献   

17.
The sorption of organic molecules on the surfaces of a number of adsorbents based on a microporous copolymer of styrene and divinylbenzene modified with different quantities of uracil is studied by means of inverse gas chromatography at infinite dilution. Samples containing 10–6, 10–5, 10–4, 10–3, 10–2, and 0.5 × 10?1 weight parts of uracil (the рС of uracil ranges from 1.3 to 6) are studied. The contributions from different intermolecular interactions to the Helmholtz energy of sorption are calculated via the linear free energy relationship. It is found that as the concentration of uracil on the surface of the polymer adsorbent grows, the contributions from different intermolecular interactions and the conventional polarity of the surface have a bend at рС = 3, due probably to the formation of a supramolecular structure of uracil. Based on the obtained results, it is concluded that the formation of the supramolecular structure of uracil on the surface of the polymer adsorbent starts when рС < 3.  相似文献   

18.
This study investigated the role of phosphate in the adhesion of bacteria (Staphylococcus aureus ATCC 10537) to iron-coated surfaces. Column experiments were performed at phosphate concentrations ranging from 0.0 to 2.0 mM. Bacterial breakthrough curves were obtained by monitoring effluent, and mass recovery and sticking efficiency were quantified from these curves. At phosphate concentrations between 0 and 0.5 mM, bacterial attachment to iron-coated sand decreased with increasing phosphate concentration (mass recovery increased from 14.0 to 86.3%), possibly due to charge modification of the coated sand from positive to negative by adsorbed phosphate ions. Between 0.5 and 2.0 mM, however, bacterial attachment increased with increasing phosphate concentration (mass recovery decreased from 86.3 to 41.3%), possibly due to compression of the electrical double layer between bacteria and phosphate-adsorbed/negatively charged surfaces by free phosphate ions. This study demonstrates that phosphate can play different roles in bacterial interaction with iron-coated surfaces depending on its concentration.  相似文献   

19.
Upon tearing off polymer films from metals and glasses phenomena are observed which testify to the apparition of high differences of potentials between the interfaces formed. In particular, if the film is stripped under vacuum, electron emission is observed with electron velocities of the order of kilovolts. These phenomena are due to division upon stripping of the double electric layer, formed upon close contact between the polymer and the substrate, and to retardation of its discharge. The same retardation of the discharge of the double layer may explain quantitatively both the high value of the work spent on tearing off the film, the dependence of the latter on the speed of stripping and on the pressure of surrounding gas. Similar phenomena were found to take place during the destruction of many crystalline (but not amorphous) solids and are explained by the formation and division of an alternating-sign double layer of mosaic structure.  相似文献   

20.
The forces and viscosity between calcium benzene sulfonate surfactant-coated mica surfaces in various hydrocarbon liquids containing a polyamine-functionalized hydrocarbon polymer (M W≈8000) have been measured using the surface forces apparatus technique. The polymer is found to adsorb to the substrate surfaces by displacing the surfactant layer, and to produce forces that are monotonically repulsive. The forces have a maximum range of 50–100 nm (>3R H), indicating that tails play a particularly important role in the interaction of this relatively low molecular weight polymer. The forces become steeply repulsive below about 10 nm (∼0.6R H), at which point a “hard-wall” repulsion comes in that can sustain pressures greater than 100 atm. Thin-film viscosity measurements indicate that the far-field positions of the slipping planes ΔH depend on the shear rate, showing that significant shear thinning/thickening effects occur within the outermost tail regions of the adsorbed layers during shear. The position of the slipping plane, or hydrodynamic layer thickness ΔH, varies from 0.6R H to 2R H away from each surface (mica and surfactant-coated mica surfaces). Beyond the hydrodynamic layer the far-field fluid viscosity is the same as that of the bulk polymer solution. At separations below D = 2ΔH the viscosity increases as each polymer layer is compressed. The static forces exhibited various time- and history-dependent effects, which further indicate that a number of different relaxation/equilibration processes are operating simultaneously in this complex multicomponent system. The results reveal that the interactions of tails of functionally adsorbed polymers play a more important role than previously thought. This is especially true in this study where the adsorbed polymers are of low molecular weight and where the tails may represent the largest fraction of interacting segments. Received: 22 September 1998 Accepted: 11 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号