首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Let 0≤g be a dyadic Hölder continuous function with period 1 and g(0)=1, and let $G(x) = \prod\nolimits_{n = 0}^\infty {g(x/{\text{2}}^n )} $ . In this article we investigate the asymptotic behavior of $\smallint _0^{\rm T} \left| {G(x)} \right|^q dx$ and $\frac{1}{n}\sum\nolimits_{k = 0}^n {\log g(2^k x)} $ using the dynamical system techniques: the pressure function and the variational principle. An algorithm to calculate the pressure is presented. The results are applied to study the regulatiry of wavelets and Bernoulli convolutions.  相似文献   

3.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

4.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

5.
We consider the central extended $\widehat{gl}(\infty )$ Lie algebra and a set of its subalgebras parametrized by |q|=1, which coincides with the embedding of the quantum tori Lie algebras (QTLA) in $\widehat{gl}(\infty )$ . Forq N=1 there exists an ideal, and a factor over this ideal is isomorphic to an $\widehat{sl}_{N(z)} $ affine algebra. For a generic valueq the corresponding subalgebras are dense in $\widehat{gl}(\infty )$ . Thus, they interpolate between $\widehat{gl}(\infty )$ and $\widehat{sl}_{N(z)} $ . All these subalgebras are fixed points of automorphism of $\widehat{gl}(\infty )$ . Using the automorphisms, we construct geometrical actions for the subalgebras, starting from the Kirillov-Kostant form and the corresponding geometrical action for $\widehat{gl}(\infty )$ .  相似文献   

6.
7.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

8.
Varying conditions on the weight function f, the author is interested in whether the extremal of the ratio $\inf \frac{{\left\| {\nabla u} \right\|_{Lp} \left( \Omega \right)}}{{\left\| {fu} \right\|_{Lp} \left( \Omega \right)}}{\lambda }_{pq} \left( {\Omega ,f} \right)$ remains symmetric. Here, f is positive almost everywhere in $u \in \mathop {W_p^1 }\limits^{\text{O}} \left( \Omega \right)$ and the infimum is taken over all functions $u \in \mathop {W_p^1 \left( \Omega \right)}\limits^{\text{O}}$ . Bibliography: 23 titles.  相似文献   

9.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

10.
Let $f(x,y,x,w) = x^2 + y^2 + z^2 + Dw^2$ , where $D >1$ is an integer such that $D \ne d^2$ and ${{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}} \right. \kern-0em} {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}$ . Let $rf(n)$ be the number of representations of n by f. It is proved that $r_f (n) = \pi ^2 \frac{n}{{\sqrt D }}\sigma _f (n) + O\left( {\frac{{n^{1 + \varepsilon - c(\theta )} }}{{\sqrt D }}} \right),$ where $\sigma _f (n)$ is the singular series, $c(\theta ) >0$ , and ε is an arbitrarily small positive constant. Bibliography: 14 titles.  相似文献   

11.
This is the first paper to consider the isometric extension problem of an into-mapping between the unit spheres of two different types of spaces. We prove that, under some conditions, an into-isometric mapping from the unit sphere S(t(2)^∞) to S(L^1(μ) can be (real) linearly isometrically extended.  相似文献   

12.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

13.
Some new results on power moments of the integral $$ J_k (t,G) = \frac{1} {{\sqrt {\pi G} }}\int_{ - \infty }^\infty { \left| {\varsigma \left( {\tfrac{1} {2} + it + iu} \right)} \right|^{2k} } e^{ - (u/G)^2 } du $$ (t ? T, T ? G ? T, κ ∈ N) are obtained when κ = 1. These results can be used to derive bounds for moments of $ \left| {\varsigma \left( {\tfrac{1} {2} + it} \right)} \right| $ .  相似文献   

14.
In this paper we prove the existence of a nontrivial non-negative radial solution for the quasilinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\nabla \cdot \left[\phi ^{\prime }(|\nabla u|^2)\nabla u \right] +|u|^{\alpha -2}u =|u|^{s-2} u,&x\in \mathbb{R }^{N},\\ u(x) \rightarrow 0, \quad \text{ as} |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where $N\ge 2, \phi (t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t, 1< p<q<N, 1<\alpha \le p^* q^{\prime }/p^{\prime }$ and $\max \{q,\alpha \}< s<p^*,$ being $p^*=\frac{pN}{N-p}$ and $p^{\prime }$ and $q^{\prime }$ the conjugate exponents, respectively, of $p$ and $q$ . Our aim is to approach the problem variationally by using the tools of critical points theory in an Orlicz-Sobolev space. A multiplicity result is also given.  相似文献   

15.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

16.
Let ${\mathcal{M}_g }$ be the moduli space of smooth complex projective curves of genus g. Here we prove that the subset of ${\mathcal{M}_g }$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}_g }$ . As an application we show that if ${X \in \mathcal{M}_g }$ is defined over $\mathbb{R}$ then there exists a low degree pencil ${u:X \to \mathbb{P}^1 }$ defined over $\mathbb{R}.$   相似文献   

17.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

18.
Let $W: = \exp \left( { - Q} \right)$ , where $Q$ is of smooth polynomial growth at $\infty$ , for example $Q\left( x \right) = \left| x \right|^\beta ,\beta >1$ . We call $W^2 $ a Freud weight. Let $\left\{ {x_{j{\kern 1pt} n} } \right\}_{j = 1}^n $ and $\left\{ {\lambda _{j{\kern 1pt} n} } \right\}_{j = 1}^n $ denote respectively the zeros of the $n$ th orthonormal polynomial $p_n$ for $W^2 $ and the Christoffel numbers of order $n$ . We establish converse quadrature sum inequalities associated with W, such as $$\left\| {\left( {PW} \right)\left( x \right)\left( {1 + \left| x \right|} \right)^r } \right\|_{L_p \left( R \right)} $$ with $C$ independent of $n$ and polynomials P of degree $ < n$ , and suitable restrictions on $r$ , $R$ . We concentrate on the case ${ \geqq 4}$ , as the case ${p < 4}$ was handled earlier. We are able to treat a general class of Freud weights, whereas our earlier treatment dealt essentially with $\left( { - \left| x \right|^\beta } \right),\beta = 2,4,6,....$ Some applications to Lagrange interpolation are presented.  相似文献   

19.
The Fourier-Bessel integral transform $$g\left( x \right) = F\left[ f \right]\left( x \right) = \frac{1} {{2^p \Gamma \left( {p + 1} \right)}}\int\limits_0^{ + \infty } {t^{2p + 1} f\left( x \right)j_p \left( {xt} \right)dt}$$ is considered in the space $\mathbb{L}_2 \left( {\mathbb{R}_ + } \right)$ . Here, j p (u) = ((2 p Γ(p+1))/(u p ))J p (u) and J p (u) is a Bessel function of the first kind. New estimates are proved for the integral $$\delta _N^2 \left( f \right) = \int\limits_N^{ + \infty } {x^{2p + 1} g^2 \left( x \right)dx, N > 0,}$$ in $\mathbb{L}_2 \left( {\mathbb{R}_ + } \right)$ for some classes of functions characterized by a generalized modulus of continuity.  相似文献   

20.
The 155 points of the Grassmannian $G_{1,4,2}$ of lines of PG (4, 2) = $\mathbb{P}V\left( {5,2} \right)$ are those points $x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X $ \subset $ PG (9, 2) will be termed odd or even according as X intersects $G_{1,4,2}$ in an odd or even number of points. Let $Q^\ddag \left( {x_1 ,...,x_5 } \right)$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X # of a r-flat X $ \subset $ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$ . Because $Q^\ddag$ is quinquelinear, the associate X # of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X $ \subseteq$ X # while if X is an even 4-flat then X # is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X # = X. An example of an even 4-flat X such that $\left( {X^\# } \right)^\#$ = X is provided by any 4-flat X which is external to $G_{1,4,2}$ . However, it appears that the two possibilities just illustrated, namely X # = X for an odd 4-flat and $\left( {X^\# } \right)^\#$ = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X # = PG (9, 2) and of even 4-flats for which ${X^{\# \# \# } }$ = X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号