首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re ≈ 0 . 01. The capsule is modeled as a liquid drop surrounded by a neo-Hookean elastic membrane. The numerical model combines immersed boundary with lattice Boltzmann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular capsule. The wall effect becomes stronger as the capsule initial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is decreased, thus, the capsule motion is slower than the background flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.  相似文献   

2.
A front-tracking method was used to study moderate to large-sized capsules flowing in cylindrical channels at Reynolds numbers ranging from 0.1 to 225. Two different constitutive equations, the Neo-Hookean and Skalak laws were considered to describe the mechanics of the thin membrane. The effect of capsule size, elastic capillary number, and Reynolds number on the shape, migration velocity, and extra pressure loss were determined. The deformation of the capsules was strongly tied to the size of the capsule compared with the channel diameter with larger capsules deforming more due to the confining effect of the wall. As the Reynolds number was increased, capsules were more elongated in the direction of flow. The effect of Reynolds number was more apparent as the elastic capillary number was increased. Both the migration velocity and extra pressure loss were seen to depend primarily on the size of the capsule with deformation playing a secondary role. The Neo-Hookean membrane showed a larger deformation than the Skalak law due to its strain softening nature. The Neo-Hookean membrane also displayed a failure phenomenon of continuous deformation at large enough elastic capillary numbers not seen in the Skalak law membranes. This limiting elastic capillary number was shown to decrease as Reynolds number became larger. The membrane strain was largest at the front of the capsule indicating the most likely region where the capsule would fail.  相似文献   

3.
Theoretical analysis is done for deformation of a tensile membrane caused by viscous flow between the membrane and a solid boundary (wafer) placed adjacent to the membrane. The membrane and its support are assumed to have circular shapes. The boundary is assumed to move perpendicularly to the membrane by a small fraction of the gap width. The Hele–Shaw flow theory is applied to the flow. Variation of the central gap width is obtained, and it is shown that the maximum membrane deformation depends on the membrane tension and the final gap width. The dependence agrees with experimental results.  相似文献   

4.
祖迎庆  施卫平 《力学学报》2005,37(2):164-168
采用格子Boltzmann方法模拟可变形膜与周围流体的相互作用. 分析了格子Boltzmann 方法中的边界处理方法和边界受力的计算方法,并且用此方法计算流场中可变形膜的受力. 可将离散化后的膜看作一系列的质点,从而得到膜的动力学方程. 将可变形膜在流场中受到 的力引入方程中,可以计算膜的变形. 求解了几种不同情况下,膜的形状随时间的变化. 发现,如果可变形膜非常软或者非常硬,经过足够长的时间后,膜的形状会接近一 条直线,即回到初始状态. 模拟过程是二阶精度的.  相似文献   

5.
The flow-induced deformation of a two-dimensional membrane with a circular unstressed shape clamped at the two ends on a plane wall at an arbitrary contact angle is considered. Working under the auspices of generalized shell theory, the membrane is allowed to develop in-plane tensions, transverse tensions, and bending moments determined by the curvature of the resting and deformed shapes. A system of ordinary differential equations governing the membrane shape is formulated, and the associated boundary-value problem is solved by numerical methods. Numerical results are presented to illustrate the deformation of a clamped membrane due to gravity or a negative transmural pressure. The shell formulation is coupled with a boundary-integral formulation for Stokes flow, and an efficient iterative scheme is developed to describe deformed equilibrium shapes of a membrane attached to a plane wall in the presence of an overpassing shear flow. Computations for different contact angles and shear rates reveal a wide variety of profiles and illustrate the distribution of the membrane tension developing due to the flow-induced deformation.  相似文献   

6.
Membrane wings have applications that involve low Reynolds number flyers such as micro air vehicles. The time-averaged and time-dependent deformations of the membrane affect the aerodynamic characteristics of the wing, primarily in the region beyond the maximum aerodynamic efficiency of the wing. This paper investigates an appropriate nondimensional vibration frequency scaling of a spanwise tensioned membrane with free (unattached) leading and trailing edges at low Reynolds numbers relative to nondimensional aeroelastic parameters. Silicone rubber membranes with varying spanwise pre-tension, aerodynamic tension (due to wing angle-of-attack and flow dynamic pressure), modulus of elasticity, span, and thickness are studied. Experimental results are compared to a proposed scaling that simplifies the aerodynamic loading as a uniform pressure distribution acting on the membrane. Data is further compared and discussed relative to previous published results of membrane wings with finite wing spans (three-dimensional flow) and fixed (rigid) leading edges.  相似文献   

7.
The simple shear flow of homogeneous suspensions of two-dimensional capsules enclosed by elastic membranes is studied in the limit of vanishing Reynolds number, in the special case where the viscosity of the fluid enclosed by the capsules is equal to the viscosity of the ambient fluid. The deformation of capsules with circular, elliptical, and biconcave unstressed shapes, and the rheological and statistical properties of their infinitely dilute and moderately dense suspensions are investigated by dynamical simulation using the method of interfacial dynamics for Stokes flow. In a preliminary investigation, the behavior of solitary capsules suspended in an infinite fluid is studied as a function of the dimensionless membrane elasticity number expressing the capsule deformability or the strength of the shear flow. It is found that a critical elasticity number above which a capsule exhibits continued elongation does not exist, and an equilibrium configuration is reached no matter how large the shear rate, in agreement with previous results for three-dimensional flow. A correspondence is established between the elasticity numbers for two- and three-dimensional flow at which the capsules undergo the same degree of deformation. Simulations of pairwise capsule interceptions reveal behavior similar to that exhibited by liquid drops with uniform surface tension. Because of strong hydrodynamic interactions in two-dimensional Stokes flow, the concept of hydrodynamic diffusivity in the limit of infinite dilution is ill-defined in the absence of fluid inertia. Dynamical simulations of doubly periodic monodisperse suspensions with up to 50 capsules distributed in each periodic cell at areal fractions of 0.25 and 0.40 provide information on the effective rheological properties of the suspension and on the nature of the statistical properties of the particle motion. The character of the flow is found to be intermediate between that of liquid drops and rigid particles, and this is attributed to the membrane deformability and to the ability of the interfaces to perform tank-treading motion. The results are compared with rheological measurements of blood flow with good agreement. Received 26 April 1999 and accepted 5 October 1999  相似文献   

8.
The constitutive analysis of the mechanical response of thin elastic membranes under inplane deformation is presented by using the multiplicative decomposition of the deformation gradient into its areal and distortional parts. Specific results are obtained for the Evans-Skalak form of the strain energy function. The solution to the problem of radial stretching of a hollow circular membrane obeying this constitutive model is then derived. The stress concentration factor is determined as a function of the relative hole size and the magnitude of the applied tension. The tension boundary is identified above which no compressive stress appears in the membrane. The limit boundary is introduced below which the membrane cannot support the applied loading without unstable wrinkling. For the loading between the tension and the limit boundary, nonuniformly distributed infinitesimal wrinkles appear within the inner portion of the membrane, carrying radial tension but no circumferential stress (tension field). The specific form of the strain energy function is used to describe this behavior, and to calculate the amount of the membrane area absorbed by infinitesimal wrinkles. The wrinkled portion is surrounded by the outer portion of the membrane carrying both radial and circumferential stresses. The limit boundary is reached when wrinkles spread throughout the membrane. It is shown that for a sufficiently large tension at the outer boundary, the wrinkling does not spread throughout the membrane no matter how large the applied tension at the inner boundary of the membrane is, provided that no rupture takes place. The limiting extent of the tension field in such cases is calculated. The linearized version of the analysis is characterized by a closed form solution.  相似文献   

9.
A combined numerical and experimental investigation has been carried out to study the flow behaviour in a spacer-filled channel, representative of those used in spiral-wound membrane modules. Direct numerical simulation and particle image velocimetry were used to investigate the fluid flow characteristics inside a 2 × 2 cell at Reynolds numbers that range between 100 and 1000. It was found that the flow in this geometry moves parallel to and also rotates between the spacer filaments and that the rate of rotation increases with Reynolds number. The flow mechanisms, transition process and onset of turbulence in a spacer-filled channel are investigated including the use of the velocity spectra at different Reynolds numbers. It is found that the flow is steady for Re < 200 and oscillatory at Re ~ 250 and increasingly unsteady with further increases in Re before the onset of turbulent flow at Re ~ 1000.  相似文献   

10.
The present work describes a numerical procedure to simulate the development of hydrodynamic entry region in a gravity-driven laminar liquid film flow over an inclined plane. It provides a better insight into the physics of developing film in entry region. A novel numerical approach is proposed which has the potential to provide solutions for the complex physics of liquid film spreading on solid walls. The method employs an incompressible flow algorithm to solve the governing equations, a PLIC-VOF method to capture the free surface evolution and a continuum surface force (CSF) model to include the effect of surface tension. To account for the moving contact line on the solid substrate, a precursor film model based wall treatment is implemented. Liquid film flow has been simulated for the Reynolds number range of 5 ≤ Re ≤ 37.5, and the predicted results are found to agree well with the available analytical and experimental data.  相似文献   

11.
对于处在低雷诺数下的微型旋翼,扰动风对其流场影响很大。本文基于动态嵌套网格技术的双时间法,采用网格速度法模拟扰动风,研究了不同频率和幅值的正弦式扰动风下三维微型旋翼上的拉力系数响应情况,并采用变形网格方法模拟了旋翼桨叶的周期性边距运动对扰动风的流动控制,为今后旋翼机的主动控制研究提供了线索。研究结果表明,低雷诺数下,旋翼在周期性扰动风作用下的拉力响应曲线拟合函数与扰动风函数形式相同,响应曲线函数同样具有周期性变化趋势,波动幅值与扰动风幅值成正比例关系;对不同飞行状态下的旋翼,采用周期等角变距方式,能够找到一个适合的控制参数使得旋翼在正弦式扰动风环境下旋翼的拉力波动在一定范围内得到有效抑制。  相似文献   

12.
In this paper, the motion of high deformable (healthy) and low deformable (sick) red blood cells in a microvessel with and without stenosis is simulated using a combined lattice Boltzmann-immersed boundary method. The RBC is considered as neo-Hookean elastic membrane with bending resistance. The motion and deformation of the RBC under different values of the Reynolds number are evaluated. In addition, the variations of blood flow resistance and time-averaged pressure due to the motion and deformation of the RBC are assessed. It was found that a healthy RBC moves faster than a sick one. The apparent viscosity and blood flow resistance are greater for the case involving the sick RBC. Blood pressure at the presence of stenosis and low deformable RBC increases, which is thought of as the reason of many serious diseases including cardiovascular diseases. As the Re number increases, the RBC deforms further and moves easier and faster through the stenosis. The results of this study were compared to the available experimental and numerical results, and good agreements were observed.  相似文献   

13.
A numerical fluid–structure interaction model is developed for the analysis of viscous flow over elastic membrane structures. The Navier–Stokes equations are discretized on a moving body‐fitted unstructured triangular grid using the finite volume method, taking into account grid non‐orthogonality, and implementing the SIMPLE algorithm for pressure solution, power law implicit differencing and Rhie–Chow explicit mass flux interpolations. The membrane is discretized as a set of links that coincide with a subset of the fluid mesh edges. A new model is introduced to distribute local and global elastic effects to aid stability of the structure model and damping effects are also included. A pseudo‐structural approach using a balance of mesh edge spring tensions and cell internal pressures controls the motion of fluid mesh nodes based on the displacements of the membrane. Following initial validation, the model is applied to the case of a two‐dimensional membrane pinned at both ends at an angle of attack of 4° to the oncoming flow, at a Reynolds number based on the chord length of 4 × 103. A series of tests on membranes of different elastic stiffness investigates their unsteady movements over time. The membranes of higher elastic stiffness adopt a stable equilibrium shape, while the membrane of lowest elastic stiffness demonstrates unstable interactions between its inflated shape and the resulting unsteady wake. These unstable effects are shown to be significantly magnified by the flexible nature of the membrane compared with a rigid surface of the same average shape. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

15.
A numerical study of three-dimensional incompressible viscous flow inside a cubical lid-driven cavity is presented. The flow is governed by two mechanisms: (1) the sliding of the upper surface of the cavity at a constant velocity and (2) the creation of an external gradient for temperature and solutal fields. Extensive numerical results of the three-dimensional flow field governed by the Navier-Stokes equations are obtained over a wide range of physical parameters, namely Reynolds number, Grashof number and the ratio of buoyancy forces. The preceding numerical results obtained have a good agreement with the available numerical results and the experimental observations. The deviation of the flow characteristics from its two-dimensional form is emphasized. The changes in main characteristics of the flow due to variation of Reynolds number are elaborated. The effective difference between the two-dimensional and three-dimensional results for average Nusselt number and Sherwood number at high Reynolds numbers along the heated wall is analyzed. It has been observed that the substantial transverse velocity that occurs at a higher range of Reynolds number disturbs the two-dimensional nature of the flow.  相似文献   

16.
In this paper, we develop a novel moving mesh method suitable for solving axisymmetric free-boundary problems, including the Marangoni effect induced by surfactant or temperature variation. This method employs a body-fitted grid system where the gas–liquid interface is one line of the grid system. We model the surfactant equation of state with a non-linear Langmuir law, and, for simplicity, we limit ourselves to the situation of an insoluble surfactant. We solve complicated dynamic boundary conditions accurately on the gas–liquid interface in the framework of finite-volume methods. Our method is used to study the effect of a surfactant on the skin friction of a bubble in a uniaxial flow. For the limiting case where the surface diffusivity is zero, the effect of a tangential stress generated by the surface tension gradient, allows us to explain a new phenomenon in high concentration regimes: larger surface tension, but also larger deformation. Furthermore, this condition leads to the formation of boundary layers and flow separation at high Reynolds numbers. The influence of these complex flow patterns is examined.  相似文献   

17.
With the use of different approaches and boundary conditions, the deformation of a long narrow rectangular membrane disposed within a rigid wedge matrix is simulated using different approaches and boundary conditions. The basic relations characterizing the stress-strain state of the membrane at different stages of deformation are obtained. The results of numerical experiments studying the characteristics of deformation of membranes are given.  相似文献   

18.
郭子漪  赵建福  李凯  胡文瑞 《力学学报》2022,54(5):1186-1198
作为流动与传热相互耦合的非线性过程, 热毛细对流有着复杂的转捩过程, 探究流场和温度场随参数变化而发生的分岔现象, 是热毛细对流研究的一个重要课题. 基于本征正交分解的POD-Galerkin降维方法可以通过提取特征模态, 构建低维模型, 实现流场的快速计算. 数值分岔方法可以通过求解含参数动力系统的分岔方程, 直接计算稳定解和分岔点. 探究了将直接数值模拟方法、POD-Galerkin降维方法、数值分岔方法的优势结合, 以提高热毛细对流转捩过程分析效率的可行性. 利用直接数值模拟得到的流场和温度场数据, 构建了不同体积比下, 二维有限长液层热毛细对流的POD-Galerkin低维模型, 在低维模型上采用数值积分及数值分岔方法计算了分岔点, 得到了低维方程的分岔图. 在一定参数范围内, 在低维模型上模拟热毛细对流, 对雷诺数和体积比进行参数外推, 通过与直接数值模拟的结果对比, 验证了低维模型的准确性与鲁棒性. 说明了低维方程可以定性反映原高维系统的流动特性, 而定量方面, 由低维模型和直接数值模拟计算得到的周期解频率的相对误差大约为5%. 验证了利用POD-Galerkin降维方法研究热毛细对流的可行性.   相似文献   

19.
对于微型设备中的低雷诺数流动,毛细力和黏性力起主导作用. 应用相场方法,引入自由能泛函,研究了二相流体在微型管中流动问题及表面浸润现象,并给出了微型管中二相流体的无量纲输运方程. 针对方形微管道,利用差分法给出了输运方程的数值求解方法.最后,模拟了方形直管中的液滴流动和变形的过程,并给出了液滴前后压力差与其它主要物理参数之间的变化关系. 结果表明,压力差随液滴半径增大而增加,而随毛细管系数的增大而减小.  相似文献   

20.
In the framework of a cell-centered finite volume method (FVM), the advection scheme plays the most important role in developing FVMs to solve complicated fluid flow problems for a wide range of Reynolds numbers. Advection schemes have been widely developed for FVMs employing pressure-velocity coupling methodology in the incompressible flow limit. In this regard, the physical influence upwind scheme (PIS) is developed for a cell-centered finite volume coupled solver (FVCS) using a pressure-weighted interpolation method for linking the pressure and velocity fields. The well-known exponential differencing scheme and skew upwind differencing scheme are also deployed in the current FVCS and their numerical results are presented. The accuracy and convergence of the present PIS are evaluated solving flow in a lid-driven square cavity, a lid-driven skewed cavity, and over a backward-facing step (BFS). The flow within the lid-driven square cavity is numerically solved at Reynolds numbers from 400 to 10 000 on a relatively coarse mesh with respect to other reported solutions. The lid-driven skewed cavity test case at Reynolds number of 1000 demonstrates the numerical performance of the present PIS on nonorthogonal grids. The flow over a BFS at Reynolds number of 800 is numerically solved to examine capabilities of current FVCS employing the current PIS in inlet-outlet flow computations. The numerical results obtained by the current PIS are in excellent agreement with those of benchmark solutions of corresponding test cases. Incorporating implicit role of pressure terms in a pressure-weighted interpolation method and development of PIS provides satisfactory solution convergence alongside the numerical accuracy for the current FVCS. A particular numerical verification is performed for the V velocity calculation within the BFS flow field, which confirms the reliability of present PIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号