首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A generic high-throughput liquid chromatography (HTLC) tandem mass spectrometry (MS/MS) assay for the determination of compound I in human urine and dialysate (hemodialysis) was developed and validated. By using the HTLC on-line extraction technique, sample pretreatment was not necessary. The sample was directly injected onto a narrow bore large particle size extraction column (50 x 1.0 mm, 60 microm) where the sample matrix was rapidly washed away using a high flow rate (5 mL/min) aqueous mobile phase while analytes were retained. The analytes were subsequently eluted from the extraction column onto an analytical column using an organic-enriched mobile phase prior to mass spectrometric detection. The analytes were then eluted from the analytical column to the mass spectrometer for the determination. The linear dynamic range was 2.0-6000 ng/mL for the urine assay and 0.1-300 ng/mL for the dialysate assay. Intraday accuracy and precision were evaluated by analyzing five replicates of calibration standards at all concentrations used to construct the standard curve. For the urine assay, the precision (RSD%, n=5) ranged from 1.9 to 8.0% and the accuracy ranged from 87.8 to 105.2% of nominal value. For the dialysate assay, the precision (RSD%, n=5) ranged from 1.1 to 10.0% and the accuracy from 94.5 to 105.2% of nominal value. In-source fragmentation of the acyl glucuronide metabolite (compound III) did not interfere with the determination of parent compound I. The developed HTLC/MS/MS methodology was specific for compound I in the presence of compound III. Column life-time is increased and sample analysis time is decreased over traditional reversed-phase methods when direct injection assays for urine and dialysate are coupled with the technology of HTLC.  相似文献   

2.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated for simultaneous quantification of olanzapine, clozapine, ziprasidone, haloperidol, risperidone, and its active metabolite 9-hydroxyrisperidone, in rat plasma using midazolam as internal standard (IS). The analytes were extracted from rat plasma using a single step liquid-liquid extraction technique. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) with gradient elution. All of the analytes were detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 0.1 ng/mL and correlation coefficient (R(2)) values for the linear range of 0.1-100 ng/mL were 0.997 or greater for all the analytes. The intra-day and inter-day precision and accuracy were better than 8.05%. The relative and absolute recovery was above 77% and matrix effects were low for all the analytes except for ziprasidone. This validated method has been successfully used to quantify the plasma concentration of the analytes after chronic treatment with antipsychotic drugs.  相似文献   

3.
Docetaxel is an antineoplastic agent widely used in therapeutics. The objective of this study was to develop and validate a routine assay, using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS), for the simultaneous quantification of docetaxel and its main hydroxylated metabolites in human plasma. A structural analogue, paclitaxel, was used as the internal standard. Determination of docetaxel and four metabolites (M1, M2, M3 and M4) was achieved using only 100 microL of plasma. Liquid-liquid extraction was used for sample preparation, with extraction efficiency of at least 90% for all analytes. Detection used positive-mode electrospray ionization in selected reaction monitoring mode. The lower limit of quantification (LLOQ) was 0.5 ng/mL for all analytes. The assay was linear in the calibration curve range 0.5-1000 ng/mL and acceptable precision and accuracy (<15%) were obtained with concentrations above the LLOQ. This method was sufficiently selective and sensitive for quantification of metabolites in plasma from cancer patients receiving docetaxel chemotherapy, and is suitable for routine analyses during pharmacokinetic studies.  相似文献   

4.
A simple, specific and sensitive LC-MS/MS assay for simultaneous determination of simvastatin (SV) and its active beta-hydroxy acid metabolite, simvastatin acid (SVA) in human plasma was developed using a statin analog as internal standard (IS). The method was validated over a dynamic linear range of 0.20-100.00 ng/mL for SV and 0.10-50.00 ng/mL for SVA with correlation coefficient r > or = 0.9987 and 0.9989, respectively. The analytes and IS were extracted from 500 microL aliquots of human plasma via liquid-liquid extraction using methyl tert-butyl ether and separated through an Aquasil C18 column (100 mm x 2.1 mm, 5 microm). Detection of analytes and IS was done by MS/MS with a turbo ion spray interface operating in positive ion and selective reaction monitoring acquisition mode. The total chromatographic run time was 3.0 min. Flash freezing of the aqueous phase was an added advantage during liquid-liquid extraction, which considerably reduced time and labour. The method was extensively validated for its accuracy, precision, recovery, stability studies and matrix effect. The method was successfully used for bioequivalence study of 40 mg SV tablet formulation in 12 human subjects under fasting condition.  相似文献   

5.
A reliable and sensitive method incorporating high turbulence liquid chromatography (HTLC) online extraction with tandem mass spectrometry (MS/MS), for simultaneous determination of suberoylanilide hydroxamic acid (SAHA) and its two metabolites, SAHA-glucuronide (M1) and 4-anilino-4-oxobutanoic acid (M2), in human serum, has been developed to support clinical studies. The HTLC technology significantly reduces the time required for sample clean-up since sample extraction and analysis are performed online. Clinical samples, internal standards (IS) and buffer are transferred into 96-well plates using a robotic liquid handling system. A 20 microL aliquot of prepared sample is directly injected into the HTLC/LC-MS/MS system where the matrix is rapidly washed away to waste and the analytes are retained on the narrow-bore extraction column (0.5 x 50 mm), using an aqueous mobile phase at 1.5 mL/min. Analytes are then eluted from the extraction column and transferred to the analytical column using a gradient mobile phase prior to detection by MS/MS. Interference with determination of SAHA from in-source dissociation of M1 is eliminated by the chromatographic separation. The resolution of SAHA and M1 did not change for more than 1500 serum sample injections by applying an acid wash (15% acetic acid) on the extraction column. The linear calibration ranges for SAHA, M1, and M2 are 2-500, 5-2000, and 10-2000 ng/mL, respectively. Assay intraday validation was conducted using five calibration curves prepared in five lots of human control serum. The precision expressed as relative standard deviation (RSD) is less than 6.8% and accuracy is 94.6-102.9% of nominal values for all three analytes. Assay specificity, freeze/thaw stability, storage stability, and matrix effects were also assessed.  相似文献   

6.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine mifepristone and monodemethyl-mifepristone in human plasma using levonorgestrel as the internal standard (IS). After solid-phase extraction of the plasma samples, mifepristone, monodemethyl-mifepristone and the IS were subjected to LC-MS/MS analysis using electro-spray ionization (ESI) in the multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an XTERRA MS C(18) column (150 x 2.1 mm i.d., 5 microm). The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration ranges of 5-2000 ng/mL for mifepristone and monodemethyl-mifepristone. The recoveries of the method were found to be 94.5-103.7% for mifepristone and 70.7-77.3% for monodemethyl-mifepristone. The method had a lower limit of quantification (LLOQ) of 5.0 ng/mL and a lower limit of detection (LOD) of 1.0 ng/mL for both mifepristone and monodemethyl-mifepristone. The intra- and inter-batch precision was less than 15% for all quality control samples at concentrations of 10, 100 and 1000 ng/mL. These results indicate that the method was efficient with a short run time (4.5 min) and acceptable accuracy, precision and sensitivity. The validated LC-MS/MS method was successfully used in a pharmacokinetic study in healthy female volunteers after oral administration of 25 mg mifepristone tablet.  相似文献   

7.
Presence of matrix ions could negatively affect the sensitivity and selectivity of liquid chromatography‐tandem mass spectrometer (LC‐MS/MS). In this study, the efficiency of a miniaturized silica monolithic cartridge in reducing matrix ions was demonstrated in the simultaneous extraction of morphine and codeine from urine samples for quantification with LC‐MS. The miniaturized silica monolith with hydroxyl groups present on the largely exposed surface area function as a weak cation exchanger for solid phase extraction (SPE). The miniaturized silica cartridge in 1 cm diameter and 0.5 cm length was housed in a 2‐ml syringe fixed over a SPE vacuum manifold for extraction. The cleaning effectiveness of the cartridge was confirmed by osmometer, atomic absorption spectrometer, LC‐MS and GC‐TOFMS. The drugs were efficiently extracted from urine samples with recoveries ranging from 86% to 114%. The extracted analytes, after concentration and reconstitution, were quantified using LC‐MS/MS. The limits of detection for morphine and codeine were 2 ng/ml and 1 ng/mL, respectively. The relative standard deviations of measurements ranged from 3% to 12%. The monolithic sorbent offered good linearity with correlation coefficients > 0.99, over a concentration range of 50–500 ng/ml. The silica monolithic cartridge was found to be more robust than the particle‐based packed sorbent and also the commercial cartridge with regards to its recyclability and repeated usage with minimal loss in efficiency. Our study demonstrated the efficiency of the miniaturized silica monolith for removal of matrix ions and extraction of drugs of abuse in urinary screening. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
For the first time, a fast, high-performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of the new ultra-short hypnotic HIE-124 and its metabolite in mice serum. Each compound, together with carbamazepine (internal standard) was extracted from the serum matrix using liquid-liquid extraction (LLE). Chromatographic resolution of the analytes was performed on a Chromolith Speed Rod monolithic silica column (100 mm × 4.6 mm i.d.) under isocratic conditions using a mobile phase of 65:35 (v/v), 20 mM phosphate buffer (pH 7.0 adjusted with phosphoric acid)-acetonitrile. The elution of the analytes were monitored at 240 nm and conducted at ambient temperature. Because of high column efficiency the mobile phase was pumped at a flow rate of 2.5 mL min(-1). The total run time of the assay was 2 min. The method was validated over the range of 60-2000 ng mL(-1) for HIE-124 and 200-1600 ng mL(-1) for the metabolite (r(2) = 0.99). The limit of detection (LOD) for HIE-124 and its metabolite were 20 ng mL(-1) and 65 ng mL(-1), respectively. The proposed method was validated in compliance with ICH guidelines, in terms of accuracy, precision, limits of detection and quantitation and other aspects of analytical validation. The developed method could be used for the trace analyses of HIE-124 and its metabolite in serum and was finally used for the pharmacokinetic study investigation of HIE-124 in mice serum.  相似文献   

9.
A rapid, specific and sensitive LC-MS/MS assay using solid-phase extraction (SPE) for the determination of pravastatin, in human plasma is described. The plasma filtrate obtained after SPE, using a polymer base, a hydrophilic-lipophilic balance (HLB) cartridge, was submitted directly to short-column liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay, with negligible matrix effect on the analysis. For validation of the method, the recovery of the free analytes was compared with that from an optimized extraction method, and the analyte stability was examined under conditions mimicking the sample storage, handling, and analysis procedures. The extraction procedure yielded extremely clean extracts with a recovery of 107.44 and 98.93% for pravastatin and IS, respectively. The intra-assay and inter-assay precisions for the samples at the LLOQ were 3.30 and 7.31% respectively. The calibration curves were linear for the dynamic range 0.5-200 ng/mL with correlation coefficient r > or = 0.9988. The intra- and inter-assay accuracy ranged from 95.87 to 112.40%. The method is simple and reliable with a total run time of 3 min. This novel validated method was applied to the pharmacokinetic (PK) study in human volunteers receiving a single oral dose of 40 mg immediate release (IR) formulation.  相似文献   

10.
An on-line liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure, using the Prospekt- 2 system, was developed and used for the determination of the levels of the active ingredients of cough/cold medications in human plasma matrix. The experimental configuration allows direct plasma injection by performing on- line solid phase extraction (SPE) on small cartridge columns prior to elution of the analyte(s) onto the analytical column and subsequent MS/MS detection. The quantitative analysis of three analytes with differing polarities, dextromethorphan (DEX), dextrorphan (DET) and guaifenesin (GG) in human plasma presented a significant challenge. Using stable-isotope-labeled internal standards for each analyte, the Prospekt-2 on-line methodology was evaluated for sensitivity, suppression, accuracy, precision, linearity, analyst time, analysis time, cost, carryover and ease of use. The lower limit of quantitation for the on-line SPE procedure for DEX, DET and GG was 0.05, 0.05 and 5.0 ng mL(-1), respectively, using a 0.1 mL sample volume. The linear range for DEX and DET was 0.05-50 ng mL(-1) and was 5-5,000 ng mL(-1) for GG. Accuracy and precision data for five different levels of QC samples were collected over three separate days. Accuracy ranged from 90% to 112% for all three analytes, while the precision, as measured by the %RSD, ranged from 1.5% to 16.0%  相似文献   

11.
A liquid chromatographic–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi‐automated 96‐well protein precipitation extraction for sample preparation and LC‐MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6‐GDC‐0834 and D6‐M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 1 – 500 ng/mL for both GDC‐0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC‐0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13–8.84 and 5.20–8.93% for GDC‐0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between‐run CV was ≤7.38% for GDC‐0834 and ≤8.20% for M1 metabolite. Between run percentage bias ranged from ?2.76 to 6.98% for GDC‐0834 and from ?6.73 to 2.21% for M1 metabolite. GDC‐0834 and M1 metabolite were stable in human plasma for 31 days at ?20 and ?70°C. This method was successfully applied to support a GDC‐0834 human pharmacokinetic‐based study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

13.
HX0969w is a novel carboxylate ester prodrug of propofol. After intravenous administration of HX0969w, the compound is rapidly hydrolyzed to its active metabolite propofol. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization has been developed for determination of HX0969w in rabbit whole blood. Protein precipitation with methanol was used for sample preparation and 7-hydroxycoumarin served as internal standard. The standard curve ranged from 50.1 to 15,030 ng mL(-1). The lower limit of quantification (LLOQ) for HX0969w was 50.1 ng mL(-1). The intra- and inter-day accuracies were within ± 10% and precisions were below 5.52%. The method was successfully applied to samples from a rabbit pharmacokinetic study.  相似文献   

14.
A high-throughput bioanalytical method for simultaneous quantitation of pravastatin and its metabolite (M1) in human serum was developed and validated using on-line extraction following liquid chromatography tandem mass spectrometry (LC-MS/MS). The on-line extraction was accomplished by the direct injection of a 50 microL serum sample, mixed 4:1 with an aqueous internal standard solution, into one of the extraction columns with aqueous 1 mm formic acid at flow rate of 3 mL/min. The separation and analysis were achieved by back-eluting the analytes from the extraction column and the analytical column to the mass spectrometer with an isocratic mobile phase consisting of 62% aqueous 1 mm formic acid and 38% acetonitrile at a flow rate of 0.8 mL/min. The second extraction column was being equilibrated while the first column was being used for analysis, and vice versa. The standard curve range was 0.500-100 ng/mL for pravastatin and M1. The lower limit of quantitation, 0.500 ng/mL for all the analytes, was achieved when 50 microL of human serum was used. The intra- and inter-day precisions were within 7.4%, and the accuracy was between 95 and 103%. The on-line extraction was finished in 0.5 min and total analysis time was 2.5 min per sample.  相似文献   

15.
Two fast and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based bioanalytical assays were developed and validated to quantify the active and three inactive metabolites of prasugrel. Prasugrel is a novel thienopyridine prodrug that is metabolized to the pharmacologically active metabolite in addition to three inactive metabolites, which directly relate to the formation and elimination of the active metabolite. After extraction and separation, the analytes were detected and quantified using a triple quadrupole mass spectrometer using positive electrospray ionization. The validated concentration range for the inactive metabolites assay was from 1 to 500 ng/mL for each of the three analytes. Additionally, a 5x dilution factor was validated. The interday accuracy ranged from -10.5% to 12.5% and the precision ranged from 2.4% to 6.6% for all three analytes. All results showed accuracy and precision within +/-20% at the lower limit of quantification and +/-15% at other levels. The validated concentration range for the active metabolite assay was from 0.5 to 250 ng/mL. Additionally, a 10x dilution factor was validated. The interbatch accuracy ranged from -7.00% to 5.98%, while the precision ranged from 0.98% to 3.39%. Derivatization of the active metabolite in blood with 2-bromo-3'-methoxyacetophenone immediately after collection was essential to ensure the stability of the metabolite during sample processing and storage. These methods have been applied to determine the concentrations of the active and inactive metabolites of prasugrel in human plasma.  相似文献   

16.
A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the simultaneous determination of donepezil (D) and its pharmacologically active metabolite, 6-O-desmethyl donepezil (6-ODD) in human plasma is developed using galantamine as internal standard (IS). The analytes and IS were extracted from 500 microL aliquots of human plasma via solid-phase extraction (SPE) on Waters Oasis HLB cartridges. Chromatographic separation was achieved in a run time of 6.0 min on a Waters Novapak C18 (150 mm x 3.9 mm, 4 microm) column under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for D, 6-ODD and IS were at m/z 380.1-->91.2, 366.3-->91.3 and 288.2-->213.2, respectively. The method was fully validated for its selectivity, interference check, sensitivity, linearity, precision and accuracy, recovery, matrix effect, ion suppression/enhancement, cross-specificity, stability and dilution integrity. A linear dynamic range of 0.10-50.0 ng mL(-1) for D and 0.02-10.0 ng mL(-1) for 6-ODD was evaluated with mean correlation coefficient (r) of 0.9975 and 0.9985, respectively. The intra-batch and inter-batch precision (%CV, coefficient of variation) across five quality control levels was less than 7.5% for both the analytes. The method was successfully applied to a bioequivalence study of 10mg donepezil tablet formulation in 24 healthy Indian male subjects under fasting condition.  相似文献   

17.
Apicidin, a fungal metabolite isolated from Fusarium pallidoroseum, is a cyclic tetrapeptide that exhibits potent anti-protozoal and anti-angiogenic activities. Although extensive studies have been recently conducted to examine the biological and pharmacological action, no information is available on the quantitative analysis of apicidin. To our knowledge, this study is the first to describe a rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay method for the quantification of apicidin in rat serum. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), accuracy, and precision. The multiple reaction monitoring was based on the transitions m/z 624.7 --> 84.3 and 372.1 --> 176.1 for apicidin and trazodone, respectively. The assay utilized a single liquid-liquid extraction and isocratic elution, and the LLOQ was 0.5 ng/mL using 0.1 mL of rat serum. The assay was linear over a range from 0.5-1000 ng/mL, with correlation coefficients >0.9994. The mean intra- and inter-day assay accuracy ranged from 99.9-101.5% and 94.8-102.1%, respectively, and the mean intra- and inter-day precision was between 2.7-5.9% and 1.6-11.5%, respectively. The developed assay method was applied to a pharmacokinetic study after intravenous injection of apicidin in rats at a dose of 1 mg/kg.  相似文献   

18.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

19.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The first liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of levetiracetam, an antiepileptic drug, in human plasma is described. The plasma filtrate obtained after solid-phase extraction (SPE), using a polymer-based, hydrophilic-lipophilic balanced (HLB) cartridge, was submitted directly to a short column LC/MS/MS assay. There was no significant matrix effect on the analysis. For validation of the method, the recovery of the free analytes was compared to that from an optimized extraction method, and the analyte stability was examined under conditions mimicking sample storage, handling, and analytical procedures. The extraction procedure yielded extremely clean extracts with a recovery of 79.95% and 89.02% for levetiracetam and the internal standard (IS), respectively. The intra-assay and inter-assay precision for the samples at the lower limit of quantitation (LLOQ) were 6.33 and 6.82%, respectively. The calibration curves were linear for the dynamic range of 0.5 to 50 microg/mL with a correlation coefficient r >/= 0.9971. The intra-assay accuracy at LLOQ, LQC, MQC, and HQC levels ranged from 81.60 to 95.40, 93.00 to 103.47, 95.97 to 104.09, and 91.15 to 95.18%, respectively, while the inter-assay accuracy at LLOQ, LQC, MQC and HQC levels varied from 80.20 to 95.40, 88.53 to 107.53, 95.97 to 108.45, and 91.15 to 112.70%, respectively. The method is rugged and fast with a total instrumental run time of 2 min. The method was successfully applied for bioequivalence studies in human subject samples after oral administration of 1000 mg immediate release (IR) formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号