首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UVB (280-315 nm)- and UVA1 (340-400 nm)-induced migration of Langerhans cells (LC) from the epidermis and accumulation of dendritic cells (DC) in the lymph nodes draining the exposed skin site of C3H/HeN mice have been investigated. One minimum erythemal dose (MED) of UVB (1.5 kJ/m2) and of UVA1 (500 kJ/m2) were chosen, which have been shown previously to suppress delayed hypersensitivity (DTH). UVB irradiation resulted in a reduction in epidermal LC numbers, local to the site of the exposure, which was most apparent 12 h after exposure, but, in contrast, UVA1 had no significant effect even at 72 h after exposure. UVA1 did not exert any protection against the UVB-mediated depletion in LC numbers. The reduction in local LC following UVB exposure was prevented by systemic (intraperitoneal) treatment of mice with neutralising antibodies to either tumor necrosis factor (TNF)-alpha or interleukin (IL)-beta 2 h prior to the irradiation. It has been reported previously that UVB exposure caused an increase in the number of dendritic cells (DC) in the lymph nodes draining the irradiated skin site. In the present study we have shown that UVA1 had a similar effect. Pretreatment of the mice with neutralising antibodies to IL-1beta (by intraperitoneal injection) substantially inhibited DC accumulation induced by both UV regimens. However, anti-TNF-alpha antibodies affected only the UVB-induced increase, and did not alter the elevation in DC numbers observed following UVA1 exposure. These results indicate that UVB causes the migration of LC from the epidermis and an accumulation of DC in the draining lymph nodes by a mechanism that requires both TNF-alpha and IL-1beta. In contrast, UVAI does not cause LC migration from the epidermis and the accumulation of DC in the draining lymph nodes observed following UVA1 exposure requires IL-1beta, but not TNF-alpha. It is likely therefore that UVA1 acts through a different mechanism from UVB and may target a cutaneous antigen presenting cell other than LC, such as the dermal DC.  相似文献   

2.
3.
It is well known that ultraviolet (UV) radiation induces erythema, immunosuppression and carcinogenesis. We hypothesized that chronic exposure to solar UV radiation induces adaptation that eventually prevents the suppression of acquired immunity. We studied adaptation for UV-induced immunosuppression after chronic exposure of mice to a suberythemal dose of solar simulated radiation (SSR) with Cleo Natural lamps, and subsequent exposure to an immunosuppressive dose of solar or UVB radiation (TL12). After UV dosing, the mice were sensitized and challenged with either diphenylcyclopropenone (DPCP) or picryl chloride (PCl). To assess the adaptation induced by solar simulated radiation, we measured the proliferative response and cytokine production of skin-draining lymph node cells after immunization to DPCP, the contact hypersensitivity (CHS) response to PCl, and thymine-thymine (T-T) cyclobutane dimers in the skin of mice. After induction of immunosuppression by SSR or by TL12 lamps, the proliferative response of draining lymph node cells after challenge with DPCP, or the CHS after challenge with PCl, showed significant suppression of the immune response. Chronic irradiation from SSR preceding the immunosuppressive dose of UV failed to restore the suppressed immune response. Reduced lipopolysaccharide-triggered cytokine production (of IL-12p40, IFN-gamma, IL-6 and TNF-alpha) by draining lymph node cells of mice sensitized and challenged with DPCP indicated that no adaptation is induced. In addition, the mice were not protected from T-T dimer DNA damage after chronic solar irradiation. Our studies reveal no evidence that chronic exposure to low doses of SSR induces adaptation to UV-induced suppression of acquired immunity.  相似文献   

4.
Exposure of the skin to UV radiation induces local inflammation. We hypothesized that inflammation induced by erythemal UV-B irradiation could elevate levels of serum C-reactive protein (CRP) and that suberythemal repeating doses of solar-simulating UV radiation (SSR) would produce photoadaptation to such inflammation. Separation-free high-sensitivity assays of CRP show an increase by 42% (P = 0.046) in CRP concentrations in healthy human subjects 24 h after a 3 minimal erythemal dose (MED) dose of UV-B delivered onto a 100 cm2 skin area. Preceding daily suberythemal doses of whole-body SSR for 10 or 30 consecutive days completely prevented the CRP increase. UV-B-induced skin erythema was partially attenuated by 30 preceding days of SSR only (P = 0.00066). After 10 daily SSR doses, the mean baseline CRP concentrations (0.24 +/- 0.21 mg/L) declined by 35% (P = 0.018). Using high-sensitivity analysis of serum CRP as the endpoint marker for cutaneous inflammation, we show that acute exposure of even a relatively small skin area to erythemal UV-B induces skin inflammation detectable also at the systemic level and that photoadaptation by preceding repeating suberythemal doses of SSR reduces signs of inflammation. Our data complement the view given by previous studies in that local photoadaptation also has systemic manifestations.  相似文献   

5.
Immunosuppressive doses of solar-simulated UV radiation activate lymph node B cells that can suppress primary immunity by inhibiting the function of dendritic cells. The aim of this study was to determine the waveband responsible for activation of these suppressor B cells. We exposed C57BL/6 mice to various doses of either UVA or UVB radiation and analyzed the number and activation state of lymph node antigen-presenting cells (APC). Immunosuppressive doses of UVB but not UVA activated B cells as assessed by major histocompatibility complex II (MHC II) expression and doubled their numbers in draining lymph nodes. Higher doses of UVA that were not immunosuppressive actually suppressed B cell activation. Our results show that UVA and UVB suppress systemic immunity via different mechanisms. Lymph node B cells are activated in response to immunosuppressive doses of UVB but not UVA. Thus, the activation state of lymph node APC appears to be important for UV immunomodulation.  相似文献   

6.
Abstract— C3H mice were irradiated three times a week for up to 6 weeks with either 500 J/m2 or 1000 J/m2 broadband UVB (270–350 nm) or 3000 J/m2 narrowband UVB (311–312 nm; TL01 source). Each dose was suberythemal to the mouse strain used. The number of Langerhans cells (LC) in the epidermis was reduced by over 50% after 2 weeks of irradiation with the UVB source and by 20% following TL01 irradiation. Continued irradiation for up to 6 weeks resulted in no further decrease in LC numbers in the case of the UVB source but a steady decline to 40% in the case of the TL01 source. Sunburn cells were detected following irradiation with both sources but the numbers were very low in comparison with acute exposure. Ultraviolet-B exposure resulted in doubling of the thickness of the epidermis throughout the 6 weeks of irradiation while TL01 exposure did not alter epidermal thickness. Conversion of trans- to ew-urocanic acid (UCA) was observed with both UVB and TL01 sources. The percentage of cis -UCA started to return to normal after 4 weeks of TL01 exposure despite continued irradiation. As observed following a single exposure, the contact hypersensitivity (CH) response was significantly reduced following 6 weeks of UVB irradiation but was unaffected by TL01 exposure, indicating no correlation between cis -UCA levels and CH response. Total serum immunoglobulin levels remained unchanged throughout the 6 weeks of UVB or TL01 irradiation but IgE titers significantly increased in all cases in the first 2 weeks of irradiation, indicating a possible shift to a TH2 cytokine profile. The IgE levels started to return to normal at later times. Thus chronic broadband UVB exposure induces a number of cutaneous and systemic responses that are likely to be dose dependent, while chronic TL0I exposure induces only some of the these responses.  相似文献   

7.
We have previously shown that keratinocytes in vitro can convert biologically inactive vitamin D3 to the hormone calcitriol. The present study was initiated to test whether ultraviolet B (UVB)-induced photolysis of provitamin D3 (7-dehydrocholesterol, [7-DHC]) which results in the formation of vitamin D3 also leads to the generation of calcitriol in keratinocytes. Submerged monolayers of HaCaT keratinocytes were preincubated with 7-DHC (25 microM) at 37 degrees C and irradiated with monochromatic UVB at different wavelengths (effective UV-doses: 7.5-60 mJ/cm2), or a narrow-band fluorescent lamp Philips TL-01 (UVB-doses: 125-1500 mJ/cm2). Irradiation with both sources of UVB resulted in the generation of different amounts of previtamin D3 in our in vitro model followed by time-dependent isomerization to vitamin D3 and consecutive formation of calcitriol in the picomolar range. Unirradiated cultures or cultures exposed to wavelengths > 315 nm generated no or only trace amounts of calcitriol. The conversion of vitamin D3 generated after UVB irradiation to calcitriol is inhibited by ketoconazole indicating the involvement of P450 mixed function oxidases in this chemical reaction. The generation of calcitriol was wavelength- and UVB dose dependent and reached approximately 18-fold higher levels after irradiation at 297 nm than at 310 nm (effective UVB dose: 30 mJ/cm2). Hence, keratinocytes may be a potential source of biologically active calcitriol within epidermis, when irradiated with therapeutical doses of UVB.  相似文献   

8.
Abstract— Trans-urocanic acid (trans-UCA) accumulates in the upper layers of the epidermis and can be isomerized to cis-UCA by UV light irradiation. Cis-urocanic acid possesses immunosuppressive properties that have led to its consideration as one of the initiators of UV-induced immunosuppression. High quantities of cis-UCA persist in human skin for prolonged periods in the summer months. In the present study, mice were injected intradermaUy with trans-UCA and cis-UCA three times a week for 4 weeks in order to ascertain the long-term effects of the presence of these compounds in the skin. The weight of mice and of their spleens were unaffected by the cis- or trans-UCA treatment. A decrease in thymus weight, accompanied by an increase in lymph node weight, was detected in the cis-UCA-treated mice compared with trans-UCA-treated mice and untreated controls. A net accumulation of lymphocytes and dendritic cells (DC) in lymph nodes was evident following cis-UCA treatment but the percentage of both CD4+and CD8+lymphocytes as well as Ia+DC remained constant among the different treatment groups, indicating that there was no specific migration or proliferation of a particular subset of cells. The in vitro lymphoproliferative response of lymph node cells to the mitogen concanavalin A was significantly sup pressed by cis-UCA treatment. The density of Langerhans cells in the epidermis of the ears was not altered by the chronic cis-UCA treatment. However, chronic cis-UCA treatment did suppress the mixed skin lymphocyte reaction response utilizing epidermal cells from the ears (an uninjected area of skin), indicating a systemic suppression. Compared with trans-UCA treatment, chronic cis-UCA treatment did not cause a significant reduction in the contact hypersensitivity response to oxazolone or the delayed hypersensitivity response to herpes simplex virus. Thus, chronic treatment with cis-UCA led to the suppression of some, but not all, of the immune parameters that are affected by UVB irradiation.  相似文献   

9.
Abstract We examined the effects of ultraviolet-B (UVB) irradiation on the accessory cell ability of Langerhans cells (LC) to induce a T-cell response to a superantigen, staphylococcal enterotoxin B (SEB). The ability of LC-enriched epidermal cells (LC-EC) to evoke a T-cell response to SEB was retained at the doses of UVB (up to 40 mJ/ cm2) that profoundly affected the antigen-presenting function of LC-EC for a hapten, trinitrophenyl (TNP), and a protein antigen, conalbumin. Thus, the LC accessory function for superantigens is more resistant to UVB irradiation than that for ordinary antigens. This UVB resistance is presumably due to no requirement of antigen processing for superantigens as chemically fixed or chloroquine-treated LC-EC still retained their ability to induce T-cell responses to SEB. Higher doses of UVB (more than 60 mJ/cm2) reduced the accessory cell ability of LC-EC for SEB up to 50% of control. The addition of monoclonal antibodies against adhesion molecules between LC and T cells to the culture resulted in substantial suppression of the T-cell response to SEB induced by nonirradiated LC-EC, while the U VB-irradiated LC-EC-induced T-cell response was not significantly blocked with these monoclonal antibodies. This suggested that the reduction of LC ability for superantigen by high doses of UVB is at least partly due to impairment of adhesion molecules on LC by UVB irradiation.  相似文献   

10.
Skin exposure to UVB radiation has been reported to produce both a significant inflammatory response and marked immunosuppression. This work was aimed to evaluate whether the response of murine skin to an acute UVB dose was modified by pre-exposure to chronic UVB irradiation and by topical treatment with naproxen, a nonsteroidal anti-inflammatory drug. Moreover, the effect of naproxen on the incidence of UV-induced skin tumors was studied. Prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α) levels were increased 96 h post-UVB in acutely irradiated animals and both mediators were modified by topical naproxen application—PGE2 was decreased while TNF-α was increased. Such inflammatory response was suppressed when mice were chronically irradiated. Naproxen application on chronically irradiated mice reduced the incidence of tumor lesions. Taken together, our data suggest that chronic UVB irradiation generates an immunosuppressive state that prevents skin cells from responding normally to an acute irradiation challenge, thus impairing the protective effect of TNF-α against skin tumor development. Furthermore, reduction in the incidence of tumor lesions by naproxen may be due to its ability to increase TNF-α levels as well as to decrease PGE2.  相似文献   

11.
Exposure of the skin to UV radiation can lead to a local infiltration of neutrophils. Not much is known on whether the infiltration of neutrophils in the irradiated skin is UV source dependent. In this study we compared different UV sources (solar-simulated radiation [SSR], narrowband [NB]-UVB, broadband [BB]-UVB and UVA1) in their potency to induce neutrophil infiltration in normal human skin after exposure to two times the minimal erythema dose of UV radiation. Biopsies were collected from irradiated buttock skin 6 and 24 h after irradiation and from nonirradiated skin. The presence, distribution and amount of skin-infiltrated neutrophils were determined using immunohistochemical staining. Analysis revealed that SSR was most effective in inducing neutrophil infiltration. NB-UVB gave a neutrophil influx pattern similar to that seen with SSR but in smaller numbers. BB-UVB and UVA1 were far less potent in inducing neutrophil infiltration compared with SSR or NB-UVB. Our findings indicate that neutrophil infiltration in the UV-irradiated skin is UV source dependent. When the spectra emitted by the different UV sources were compared UVB seemed to be more effective than UVA in inducing neutrophil infiltration. Furthermore, our results suggest that longer wavelengths within the UVB range are mostly responsible for the infiltration of neutrophils in the UV-irradiated skin.  相似文献   

12.
Abstract— Our laboratory has demonstrated in preliminary experiments that UVB exposure using the Kromayer lamp can induce increased numbers of Trichinella spiralis larvae in carcasses of infected Wistar rats, without affecting specific antibody titers to this parasite. In this study, orally T. spiralis-infected Wistar rats were exposed to subery-themal doses of UVB radiation using FS40 lamps during different time periods before or after infection. A significant increase in the number of T. spiralis larvae was found in the carcasses of rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Additionally, increased numbers of larvae were also detected histologically in the tongue of rats that were exposed the first and the second week after infection. Lymphocyte stimulation assays using mesenteral lymph node cells indicated that UVB exposure also impaired the specific lymphocyte response to T. spiralis. Moreover, DTH responses to T. spiralis were severely impaired in rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Thus, these data combined with the data of the Kromayer study indicate that exposure of rats to FS40 irradiation following oral infection with T. spiralis leads to increased numbers of larvae in systemic sites and impaired T-cell immunity to the parasite.  相似文献   

13.
The modifications induced in hairless mouse skin by chronic UV irradiation were investigated. Skin explant cultures were used to study UVA- and UVB-induced changes occurring in interstitial collagen (type I and type III) and fibronectin biosynthesis. To study the long-term effects, albino hairless mice were irradiated with UVA radiation alone from two sources with different spectral qualities or with UVB. UVA and UVB radiation produced a significant increase in the ratio of type III to type I collagen (more than 100% for UVA-irradiated skin and about 60% for UVB-irradiated skin) accompanied by a significantly increased fibronectin biosynthesis (50% or more in all irradiated groups). Irradiation with either UVA or UVB alone had no significant effect on the total collagen synthesis and resulted in only a slight decrease in the total collagen content of the skin determined as hydroxyproline. This decrease was significant only in the case of the group irradiated with UVA (xenon) (decrease of 25%, expressed as micrograms of hydroxyproline per milligram wet weight). A significant decrease in collagen hydroxylation (expressed as radioactive hydroxyproline/radioactive hydroxyproline plus proline in neosynthesized collagen) was observed of about 50% in skin irradiated with UVA (xenon) but not in UVB-treated skin. Several of the above modifications (increased fibronectin biosynthesis, increased collagen type III to type I ratio) correspond to the modifications observed during the aging of non-irradiated hairless mice. Therefore it appears that UV irradiation accelerates the modifications of extracellular matrix biosynthesis observed during aging.  相似文献   

14.
Naturally occurring hydrolyzable (HT) and condensed (CT) tannins and their monomeric units were tested for their ability to inhibit the stimulation of DNA synthesis by UVB radiation. Hairless mice were irradiated with either single (200 mJ/cm2) or multiple (150 mJ/cm2) doses of UVB applied at 24 h intervals and epidermal DNA synthesis was measured at different times after the last of these treatments. The peak of DNA synthesis that is observed 48–56 h after a single UVB irradiation shifts to an earlier time of 16–24 h after multiple UVB treatments. Interestingly, the early inhibitory period of DNA synthesis observed 8 h after a single UVB treatment is not detected following multiple UVB treatments. Rather, DNA synthesis is stimulated six-fold 24 h after multiple UVB treatment, a response that is higher than the peak occurring 48–56 h after a single UVB irradiation. The disappearance of the early period of inhibition when the peak of DNA synthesis shifts to an earlier time may be linked to reactive oxygen species brought to the epidermis by infiltrating leukocytes, which, in turn, act as second messengers to stimulate growth signals in cells. Topical applications of HT or CT remarkably inhibit the DNA responses to single and multiple UVB treatments, an effect that is dependent on the dose and time of administration. Indeed, the peak stimulation of DNA synthesis is maximally inhibited when 17 mg of Tarapod tannic acid (TA), an HT, are applied topically 20 min before a single UVB treatment. The polymeric tannins inhibited DNA synthesis to a greater degree than equal doses of their monomeric units, gallic acid and catechin. These results suggest that various oligomeric HT and CT may be useful against tumor-promoting responses associated with the exposure of skin to physical carcinogens.  相似文献   

15.
Ultraviolet (UV) eye irradiation denatures the cells of the intestine. This study examined the action of UVA and UVB on dextran sodium sulfate (DSS)‐induced ulcerative colitis. We produced a mouse model of ulcerative colitis by administering DSS for 5 days and irradiated the eye with UVB or UVA for each day of the DSS treatment period. DSS‐induced ulcerative colitis was deteriorated by the UVB eye irradiation. Conversely, the symptoms improved with UVA eye irradiation. The levels of adrenocorticotropic hormone (ACTH), corticotropin‐releasing hormone (CRH), urocortin 2, interleukin (IL)‐18, IL‐6 and histamine in the blood increased after the UVB eye irradiation of DSS‐treated mice (UVB/DSS‐treated mice). In contrast, the β‐endorphin level in the blood of the UVA/DSS‐treated mice increased and the levels of urocortin 2, tumor necrosis factor (TNF)‐α and histamine decreased. Furthermore, in the colon, the expression of melanocortin‐2 receptors (MC2R) increased in the UVB/DSS‐treated mice, while the expression of μ‐opioid receptors increased in the UVA/DSS‐treated mice. When an ACTH inhibitor was administered, UVB eye irradiation caused the deterioration of DSS‐treated ulcerative colitis, while the effect of UV eye irradiation disappeared with a μ‐opioid receptor antagonist. These results suggested that UV eye irradiation plays an important role in DSS‐induced ulcerative colitis.  相似文献   

16.
Cyclooxygenase (COX)-2 inhibitors are known to be used as chemopreventative agents against certain malignancies. Thus far, there has been very limited information on whether COX-2 inhibitors protect against chronic narrow-band UVB (NB-UVB)-induced immunosuppression. The present study investigated the effect of nonselective and specific COX-2 inhibitors, indomethacin and celecoxib, on epidermal Ia+ Langerhans cells (LCs) and Thy-1+ dendritic epidermal T cells (DETCs) in mice irradiated with NB-UVB. Sixty female BALB/c mice were divided randomly into the control group (sham) and the experimental groups (irradiated with NB-UVB for 17 weeks, further divided into five groups according to the diets containing different concentrations of either COX-2 inhibitors). Alterations in the density and morphology of epidermal Ia+ LCs and Thy-1+ DETCs in mice were documented using fluorescence microscopy. Chronic NB-UVB irradiation substantially decreased the density and altered the morphology of the epidermal Ia+ LCs and Thy-1+ DETCs in control mice. The dietary supplementation of both COX-2 inhibitors displayed a dosage-dependent protective effect on the murine dendritic cells irradiated by NB-UVB. In conclusion, COX-2 inhibitors protected against chronic NB-UVB-induced density and morphologic changes in epidermal Ia+ LCs and Thy-1+ DETCs in mice.  相似文献   

17.
Abstract— Irradiation with ultraviolet B (UVB, 290–320 nm) causes a systemic immunosuppression of cell-mediated immunity. The question of whether UV immunosuppression modulates the course of infectious diseases is important becauseUVB levels in sunlight are sufficient to predict significant UV-induced immunosuppression at most latitudes. We have investigated the effect of immunosuppressive doses of UVB on the disease caused by the helminth parasite Schistosoma mansoni. C57BL/6 mice were irradiated once or three times weekly over 60–80 days with UV from a bank of FS40 sunlamps. Each UV treatment consisted of an immunosuppressive UV dose, as determined by suppression of contact hypersensitivity to trinitrochlorobenzene, corresponding to about 15–30 min of noonday tropical sunlight exposure under ideal clear sky conditions. Cumulative UV doses were between 80 and 170 kJ/m2. Worm and egg burdens, liver granuloma diameters and liver fibrosis showed minimal changes(> 20%) compared with parameters in unirradiated animals. Ultraviolet irradiation (a total of 55 kJ/m2 administered in six treatments) did not impair the resistance to rechallenge conferred by vaccination with 60Co-irradiated cercariae. We have thus observed a dichotomy between UV immunosuppression and both disease and vaccination in this helminth infection, in contrast to the effects of UVB shown in other infectious diseases.  相似文献   

18.
Solar UVB radiation evokes photokeratitis, accompanied by increased corneal hydration and changes in corneal transparency, resulting in increased light absorption. Corneal optical properties are disturbed and visual acuity decreased. The aim of this study was to investigate the reversibility of these UVB‐induced changes. Rabbit corneas were irradiated with UVB doses of 0.5 J cm?2 or 1.01 J cm?2 during 4 days. Some rabbits were sacrificed after the last irradiation and some 2 months later. Corneas were investigated spectrophotometrically for light absorption, and corneal hydration was evaluated by central corneal thickness with an ultrasonic pachymeter. Corneal impression cytologies were examined immunohistochemically for proinflammatory cytokines and malondialdehyde. The increased corneal light absorption, hydration and the staining of immunohistochemical markers found in corneas after irradiation returned to normal values during 2 months in corneas irradiated with the lower UVB dose. In contrast, in corneas irradiated with the higher UVB dose, a moderate but statistically significant increase in corneal light absorption, hydration and positive immunohistochemical stainings remained as residual changes. This was in contrast to normal corneas, where the staining of proinflammatory cytokines as well as malondialdehyde was negative. In conclusion, the reversibility of UVB‐induced disturbances was dependent on UVB dose.  相似文献   

19.
To examine the effect of laser thermal injury on Langerhans cells (LC) within the epidermis, the dorsal skin of mice and hairless guinea pigs was exposed to varying levels of laser irradiation using a thulium laser at a wavelength of 2.0 μm. At 6, 24 and 48 h post irradiation, animals were euthanized, skin samples prepared for histology and the epidermis obtained and stained by major histocompatibility complex‐II staining (mice) or ATPase assay (hairless guinea pigs) for the enumeration of LC. Mouse skin exhibited histological evidence of thermal damage at 24 h post irradiation at even the lowest dose (0.14 W) and decreases in the numbers of epidermal LC were observed at all doses and decreases were proportional to dose. In contrast, hairless guinea pig skin only showed consistent histological evidence of thermal damage at the highest dose of irradiation (0.70 W) at 24 and 48 h post irradiation and exhibited a statistically significant decrease in numbers of epidermal LC only at this dose. Thus, epidermal LC depletion occurred in the skin of both mice and hairless guinea pigs in response to laser treatment and the magnitude of depletion directly correlated with the extent of thermal damage both within and between species.  相似文献   

20.
Abstract— In studies of the effects of chronic UVB irradiation on dermal connective tissue in the hairless mouse, we observed that the number and size of mast cells was increased. Because mast cells are known to be associated with connective tissue remodeling, we examined and quantified the effect of increasing UVB (290-320 nm) doses on this cell. Groups of mice were exposed to filtered FS-40 Westinghouse lamps (290-400 nm: peak irradiance 313 nm) for 1-5 minimal erythema doses (MED) thrice weekly for 10 weeks. Appropriate controls were included. Biopsies, processed for light microscopy, were stained with toluidine blue. Mast cells were counted in 15 high-magnification fields per specimen with upper and lower dermis scored separately. Significant increases in large densely granular mast cells occurred at 2 MED in the lower dermis, in association with a UVB-exacerbated granulomatous reaction. In the upper dermis, mast cells were significantly increased with 3 MED. These findings suggest that mast cells may play a dual role in UV-irradiated skin with those in the lower dermis related to inflammation processes and those in the upper dermis involved in connective tissue modeling. To gain understanding of the mechanism of mast cell recruitment and maturation, we examined the effect of UVB on mast cell growth factor expression. This was enhanced in the epidermis by UVB, with a shift from cytoplasmic staining to membrane-associated or intercellular staining at 2 MED and higher. Dermal dendritic and mononuclear cells also showed increased reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号