首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to quantum theory, microscopic objects exist in a superposition of distinct states until they are “observed”. Nobody knows whether such quantum coherence can actually exist in a macroscopic system. In the experiment described here, a superconducting quantum interference device is extremely well isolated from any interaction with internal or external modes, and a superposition state can be demonstrated even if it lasts for less than 1 ns. This is accomplished by using superconducting digital electronic circuitry as the experimental apparatus. If successful, it is the first step toward a future full-scale quantum computer fabricated using integrated circuit manufacturing techniques.  相似文献   

2.
Quantum corrals present interesting properties due to the combination of confinement and, in the case of elliptical corrals, to their focalizing properties. We study the case when two magnetic impurities are added to the non-interacting corral, where they interact via a superexchange AF interaction J with the surface electrons in the ellipse. Previous results showed that, when both impurities are located at the foci of the system, they experience an enhanced magnetic interaction, as compared to the one they would have in an open surface. For small J and even filling, they are locked in a singlet state, which weakens for larger values of this parameter. When J is much larger than the hopping parameter of the electrons in the ellipse, both spins decorrelate while forming a local singlet with the electrons of the ellipse, thus presenting a confined RKKY–Kondo transition.We interpret this behaviour by means of the von Neumann entropy between the localized impurities and the itinerant electrons of the ellipse: for small J the entropy is nearly zero while for large J it is maximum. In addition, the local density of states provides us with a concrete experimental tool for detecting the Kondo regime.  相似文献   

3.
We study the steady state of a three-level system in contact with a non-equilibrium environment, which is composed of two independent heat baths at different temperatures. We derive a master equation to describe the non-equilibrium process of the system. For the three level systems with two dipole transitions, i.e., the ΛΛ-type and V-type, we find that the interferences of two transitions in a non-equilibrium environment can give rise to non-vanishing steady quantum coherence, namely, there exist non-zero off-diagonal terms in the steady state density matrix (in the energy representation). Moreover, the non-vanishing off-diagonal terms increase with the temperature difference of the two heat baths. Such interferences of the transitions were usually omitted by secular approximation, for it was usually believed that they only take effect in short time behavior and do not affect the steady state. Here we show that, in non-equilibrium systems, such omission would lead to the neglect of the steady quantum coherence.  相似文献   

4.
Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.  相似文献   

5.
In recent years, there have been significant progress toward building a practical quantum computer, demonstrating key ingredients such as single-qubit gates and a two-qubit entangling gate. Among various physical platforms for a potential quantum computing processor, a trapped-ion system has been one of the most promising platforms due to long coherence times, high-fidelity quantum gates, and qubit connectivity. However, scaling up the number of qubits for a practical quantum computing faces a core challenge in operating high-fidelity quantum gates under influence from neighboring qubits. In particular, for the trapped-ion system, unwanted quantum crosstalk between qubits and ions’ quantum motional states hinder performing high-fidelity entanglement as the number of ions increases. In this review, we introduce a trapped-ion system and explain how to perform single-qubit gates and a two-qubit entanglement. Moreover, we mainly address theoretical and experimental approaches to achieve high-fidelity and scalable entanglement toward a trapped-ion based quantum computer.  相似文献   

6.
利用半导体量子点阵列结构实现近邻耦合是规模化扩展自旋量子比特的主要方案之一.随着量子点数目的增加,量子点阵列器件的制作工艺及参数调控均愈加复杂.本文介绍了一种重叠栅工艺结构,利用多层相互重叠且具有不同功能的栅极定义量子点,制作出结构紧凑、调控性好的量子点阵列器件,解决了工艺扩展的难题.此外,本文发展了一套高效可靠的调控方法,按顺序逐个添加量子点并建立虚拟电极,实现了对量子点参数的独立控制,并且能够高效且独立地调控各量子点中的电子数目,克服了大规模量子点阵列中电压参数配置的困难.这些方法为未来实现大规模自旋比特阵列提供了一种标准化的方案.  相似文献   

7.
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.  相似文献   

8.
We report on a method for single-shot readout of spin states in a semiconductor quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. The method is analyzed theoretically, and compared to a previously used method. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.  相似文献   

9.
The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.  相似文献   

10.
We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels.  相似文献   

11.
12.
The possibility to save and process information in fundamentally indistinguishable states is the quantum mechanical resource that is not encountered in classical computing. I demonstrate that, if energy constraints are imposed, this resource can be used to accelerate information-processing without relying on entanglement or any other type of quantum correlations. In fact, there are computational problems that can be solved much faster, in comparison to currently used classical schemes, by saving intermediate information in nonorthogonal states of just a single qubit. There are also error correction strategies that protect such computations.  相似文献   

13.
We investigate the retardation effect on the radiative decay and entanglement of two quantum dots. The retardation effect is found to be very weak if the dots are coupled to free-space vacuum reservoir. To enhance the effect, we propose to embed the dots inside a one-dimensional waveguide. It is found that populations and entanglement can saturate to non-vanishing values with appropriate conditions. Furthermore, entanglement sudden-rise and sudden-fall are also observed due to this non-Markovian retardation.  相似文献   

14.
We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.  相似文献   

15.
We discuss pulsed electron spin resonance measurements of electrons in Si and determine the spin coherence from the decay of the spin echo signals. Tightly bound donor electrons in isotopically enriched 28Si are found to have exceptionally long spin coherence. Placing the donors near a surface or interface is found to decrease the spin coherence time, but it is still in the range of milliseconds. Unbound two-dimensional electrons have shorter coherence times of a few microseconds, though still long compared to the Zeeman frequency or the typical time to manipulate a spin with microwave pulses. Longer spin coherence is expected in two-dimensional systems patterned into quantum dots, but relatively small dots will be required. Data from dots with a lithographic size of 400 nm do not yet show longer spin coherence.  相似文献   

16.
In this work, we explore a new connection between quantum groups and Tsallis entropy through the energy spectrum of a Hamiltonian with SUq(2)SUq(2) symmetry. Identifying the deformation parameter of the entropy with the parameter of deformation of the associated quantum group, we deduce Tsallis entropy for states related to such a system with SUq(2)SUq(2) symmetry and conducted an investigation of quantum entanglement.  相似文献   

17.
18.
《Physics letters. A》2019,383(29):125905
We explore the coherence and entanglement of two separated quantum dots placed in an open microcavity. The generated entanglement and coherence depend crucially on the two-exciton decay and the initial coherence intensity. The phenomena of sudden death and sudden birth entanglement are observed.  相似文献   

19.
用腔场中的二能级势阱离子实现量子逻辑门   总被引:1,自引:0,他引:1  
利用光腔中的势阱粒子同时与外激光场和腔场发生相互作用的特性,我们提出了一种量子逻辑门的实现方案。在该方案中,我们采用文献[10-12]中的模型。文献[11-12]中实现的逻辑门是以离子内态和运动态作为量子比特,腔态充当辅助比特在计算过程中保持在基态。而[10]要求离子内态保持为基态,利用离子运动态和腔态构成量子比特。与文献[10-12]不同的是,我们实现的量子逻辑门是以粒子内态和腔态作为比特,而势阱离子的运动态作为辅助比特始终保持在基态。而且,我们对该方案的实验要求进行了讨论。  相似文献   

20.
The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号