首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高AlGaN基深紫外激光二极管(Deep Ultraviolet Laser Diodes,DUV-LD)有源区内载流子浓度,减少载流子泄露,提出一种DUV-LD双阻挡层结构,相对于传统的单一电子阻挡层(Electron Blocking Layer, EBL)结构,又引入一空穴阻挡层(Hole Blocking Layer, HBL),仿真结果证明空穴阻挡层的应用能很好地减少空穴泄漏.同时又对双阻挡层改用五周期Al0.98Ga0.02N/Al0.9Ga0.1N多量子势垒层结构,结果显示与矩形EBL和HBL激光二极管相比,多量子势垒EBL和HBL激光二极管有更好的斜率效率,并且有源区内电子和空穴载流子浓度以及辐射复合速率都有效提高,其中多量子势垒EBL在阻挡电子泄露方面效果更显著.  相似文献   

2.
The design of the active region structures, including the modifications of structures of the quantum barrier(QB) and electron blocking layer(EBL), in the deep ultraviolet(DUV) Al Ga N laser diode(LD) is investigated numerically with the Crosslight software. The analyses focus on electron and hole injection efficiency, electron leakage, hole diffusion,and radiative recombination rate. Compared with the reference QB structure, the step-like QB structure provides high radiative recombination and maximum output power. Subsequently, a comparative study is conducted on the performance characteristics with four different EBLs. For the EBL with different Al mole fraction layers, the higher Al-content Al Ga N EBL layer is located closely to the active region, leading the electron current leakage to lower, the carrier injection efficiency to increase, and the radiative recombination rate to improve.  相似文献   

3.
The performance characteristics of deep violet In0.082Ga0.918N/GaN double quantum well (DQW) laser diodes (LDs) with different electron blocking layer (EBL) including a ternary AlGaN bulk EBL, a quaternary AlInGaN bulk EBL and ternary AlGaN multi quantum barrier (MQB) EBL has been numerically investigated. Inspired by the abovementioned structures, a new LD structure with a quaternary AlInGaN MQB EBL has been proposed to improve the performance characteristics of the deep violet InGaN DQW LDs. Simulation results indicated that the LD structure with the quaternary AlInGaN MQB EBL present the highest output power, slope efficiency and differential quantum efficiency (DQE) and lowest threshold current compared with the above mentioned structures. They also indicated that choosing an appropriate aluminum (Al) and indium (In) composition in the quaternary AlInGaN MQB layers could control both piezoelectric and spontaneous polarizations. It will decrease the electron overflow from the active region to p-side and increased the contribution of electron and hole carriers to the radiative recombination effectively. Enhancing radiative recombination in the well using the quaternary AlInGaN MQB EBL also increased the optical output power and optical intensity.  相似文献   

4.
The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0.7) N/5.0 nm Alx Ga_(1-x) N/8.0 nm Al_(0.3) Ga_(0.7) N with decreasing value of x. The results indicate that the internal quantum efficiency is significantly improved and the efficiency droop is mitigated by using the proposed structure. These improvements are attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes,which result in an increased hole injection efficiency and a decreased electron leakage into the p-type region. In addition,the linearly graded AlGaN inserting layer can generate more holes in EBL due to the polarization-induced hole doping and a tunneling effect probably occurs to enhance the hole transportation to the active regions, which will be beneficial to the radiative recombination.  相似文献   

5.
郭敏  郭志友  黄晶  刘洋  姚舜禹 《中国物理 B》2017,26(2):28502-028502
In Ga N light-emitting diodes(LEDs) with Ga N/In Ga N/Al Ga N/In Ga N/Ga N composition-graded barriers are proposed to replace the sixth and the middle five Ga N barriers under the condition of removing the electron blocking layer(EBL)and studied numerically in this paper. Simulation results show that the specially designed barrier in the sixth barrier is able to modulate the distributions of the holes and electrons in quantum well which is adjacent to the specially designed barrier. Concretely speaking, the new barrier could enhance both the electron and hole concentration remarkably in the previous well and reduce the hole concentration for the latter one to some extent along the growth direction. What is more,a phenomenon, i.e., a better carrier distribution in all the wells, just appears with the adoption of the new barriers in the middle five barriers, resulting in a much higher light output power and a lower efficiency droop than those in a conventional LED structure.  相似文献   

6.
The upper waveguide(UWG) has direct influences on the optical and electrical characteristics of the violet laser diode(LD) by changing the optical field distribution or barrier of the electron blocking layer(EBL). In this study, a series of In GaN-based violet LDs with different UWGs are investigated systematically with LASTIP software. It is found that the output light power(OLP) under an injecting current of 120 mA or the threshold current(Ith) is deteriorated when the UWG is u-In_(0.02)Ga_(0.98)N/GaN or u-In_(0.02)Ga_(0.98)N/Al_xGa_(1-x)N(0 ≤ x ≤ 0.1), which should be attributed to small optical confinement factor(OCF) or severe electron leakage. Therefore, a new violet LD structure with u-In_(0.02)Ga_(0.98)N/GaN/Al_(0.05)Ga_(0.95)N multiple layer UWG is proposed to reduce the optical loss and increase the barrier of EBL. Finally,the output light power under an injecting current of 120 mA is improved to 176.4 mW.  相似文献   

7.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

8.
三元系和四元系GaN基量子阱结构的显微结构   总被引:1,自引:1,他引:0       下载免费PDF全文
GaN基量子阱是光电子器件如发光二极管、激光二极管的核心结构。实验表明,采用InGaN/GaN三元和AlInGaN/GaN四元两种不同量子阱结构的激光二极管的发光性质和发光效率有明显差别,研究了这两种不同量子阱结构的显微特征。利用原子力显微镜表征了样品的(001)面;通过高分辨X射线衍射对两种量子阱结构的(002)面作ω/2θ扫描测得其卫星峰并分析了两种不同量子阱结构的界面质量;利用X射线衍射对InGaN/GaN和AlInGaN/GaN这两种量子阱的(002)、(101)、(102)、(103)、(104)、(105)和(201)面做ω扫描,进而得到其摇摆曲线。最后利用PL谱研究了它们的光学性能。通过这些显微结构的分析和研究,揭示了InGaN/GaN三元和AlInGaN/GaN四元两种不同量子阱结构宏观性质不同的结构因素。  相似文献   

9.
Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy(MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for Ga N,and the growth rate of Ga N micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of Ga N, the selective area growth of In Ga N on the patterned template would induce the deposition of In Ga N polycrystalline particles on the patterned SiO2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.  相似文献   

10.
本文提出了用双阶渐变阶梯和倒双阶渐变阶梯形电子阻挡层(EBL)以减少AlGaN基深紫外激光二极管(DUV-LDs)在p型区的电子泄露,并用Crosslight软件模拟仿真了双阶渐变阶梯和倒双阶渐变阶梯形EBL结构的光电特性,结果发现:具有倒双阶渐变阶梯形EBL的激光器拥有比双阶渐变阶梯形EBL激光器更高的斜率效率(SE),更高的输出功率,更低的阈值电流和阈值电压,更高的有效势垒高度和更低的电子泄露.这意味着前者拥有更强的抑制电子泄露的能力.在与矩形EBL结构对比中发现,所提出的结构还提高了有源区载流子浓度和辐射复合速率,进一步提高了DUV-LDs的光电性能.  相似文献   

11.
The blue InGaN light-emitting diodes (LEDs), employing a lattice-compensated p-AlGaN/InGaN superlattice (SL) interlayer to link the last quantum barrier and electron blocking layer (EBL), are proposed and investigated numerically. The simulation results indicate that the newly designed LEDs have better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region over the conventional LEDs mainly attributed to the mitigated polarization-induced downward band bending. Furthermore, the markedly improved output power and efficiency droop are also suggested when the conventional LEDs corresponding to experiment data are replaced by the newly designed LEDs.  相似文献   

12.
In order to suppress the electron leakage to p-type region of near-ultraviolet GaN/In_xGa_(1-x )N/GaN multiple-quantumwell(MQW) laser diode(LD), the Al composition of inserted p-type AlxGa_(1-x)N electron blocking layer(EBL) is optimized in an effective way, but which could only partially enhance the performance of LD. Here, due to the relatively shallow GaN/In_(0.04)Ga_(0.96)N/GaN quantum well, the hole leakage to n-type region is considered in the ultraviolet LD. To reduce the hole leakage, a 10-nm n-type Al_xGa_(1-x)N hole blocking layer(HBL) is inserted between n-type waveguide and the first quantum barrier, and the effect of Al composition of Al_xGa_(1-x)N HBL on LD performance is studied. Numerical simulations by the LASTIP reveal that when an appropriate Al composition of Al_xGa_(1-x)N HBL is chosen, both electron leakage and hole leakage can be reduced dramatically, leading to a lower threshold current and higher output power of LD.  相似文献   

13.
The electroluminescence (EL) intensity has been investigated of green and blue (In,Ga)N multiple‐quantum‐well diodes grown on c ‐plane sapphire over a wide temperature range and as a function of current between 0.01 mA and 10 mA. The EL intensity of the green diode with p‐(Al,Ga)N electron blocking layer does not show low‐temperature quenching, especially at low injection levels, previously observed for the blue (In,Ga)N quantum‐well diodes. This finding rules out possi‐ bilities that the freeze‐out of holes at deep Mg acceptor levels and the failure of hole injections through the p‐(Al,Ga)N layer are directly responsible for the EL quenching at temperatures below 100 K. Variations of the EL efficiency with current level suggest that capture/escape efficiencies of injected carriers by the wells play an important role for the determination of EL external quantum efficiency. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A theoretical study of polar and semi/non-polar In Ga N/Ga N light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar In Ga N/Ga N LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells(QWs) approaching the p-Ga N side, the uniformity of distribution of carriers and radiative recombination rate for the nonpolar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.  相似文献   

15.
A double-tapered AlGaN electron blocking layer (EBL) is proposed to apply in a deep ultraviolet semiconductor laser diode. Compared with the inverse double-tapered EBL, the laser with the double-tapered EBL shows a higher slope efficiency, which indicates that effective enhancement in the transportation of electrons and holes is achieved. Particularly, comparisons among the double-tapered EBL, the inverse double-tapered EBL, the singletapered EBL and the inverse single-tapered EBL show that the double-tapered EBL has the best performance in terms of current leakage.  相似文献   

16.
We experimentally evaluated the interface state density of Ga N MIS-HEMTs during time-dependent dielectric breakdown(TDDB). Under a high forward gate bias stress, newly increased traps generate both at the Si Nx/Al Ga N interface and the Si Nx bulk, resulting in the voltage shift and the increase of the voltage hysteresis. When prolonging the stress duration, the defects density generated in the Si Nx dielectric becomes dominating, which drastically increases the gate leakage current and causes the catastrophic failure. After recovery by UV light illumination, the negative shift in threshold voltage(compared with the fresh one) confirms the accumulation of positive charge at the Si Nx/Al Ga N interface and/or in Si Nx bulk, which is possibly ascribed to the broken bonds after long-term stress. These results experimentally confirm the role of defects in the TDDB of Ga N-based MIS-HEMTs.  相似文献   

17.
We demonstrate that a low-temperature Ga N insertion layer could significantly improve the surface morphology of non-polar a-plane Ga N.The two key factors in improving the surface morphology of non-polar a-plane Ga N are growth temperature and growth time of the Ga N insertion layer. The root-mean-square roughness of a-plane Ga N is reduced by 75% compared to the sample without the Ga N insertion layer. Meanwhile, the Ga N insertion layer is also beneficial for improving crystal quality. This work provides a simple and effective method to improve the surface morphology of non-polar a-plane Ga N.  相似文献   

18.
We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAl_xGa_(1-x)N irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.  相似文献   

19.
张运炎  范广涵 《中国物理 B》2011,20(4):48502-048502
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra,carrier concentration in the quantum wells (QWs),energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.  相似文献   

20.
Nitride-based light-emitting diodes suffer from a reduction (droop) of the internal quantum efficiency (IQE) with increasing injection current. Using advanced device simulation, we investigate the impact of electron leakage on the IQE droop for different properties of the electron blocker layer (EBL). The simulations show a strong influence of the EBL acceptor density on the droop. We also find that the electron leakage decreases with increasing temperature, which contradicts common assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号