首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍了基于外部调制二极管激光器(波长661.85 nm,线宽为0.3 nm)为光源的腔衰荡光谱技术探测环境大气中NO3自由基.通过改变外部调制信号,优化二极管激光器的输出光谱,获得NO3自由基的有效吸收截面;探讨了大气中的其他气体成分(O3,NO2和水蒸气)对NO3自由基的测量干扰;考虑PFA管的壁碰撞损耗和过滤膜的损耗,初步量化本系统的NO3自由基进气效率约为70%.当时间分辨率为7 s时,在实验室环境下,系统的探测限为2.0 pptv.将本系统初步应用于夜间大气中NO3自由基的测量(2 h),获得了NO3自由基的浓度主要在17.9—51.7 pptv之间,平均浓度为36.3 pptv,实际的探测限为3.5 pptv;由于NO3自由基进气效率的不确定性等因素,系统的测量误差约为±8%(1σ).实验结果表明,二极管激光腔衰荡光谱技术可实现大气中NO3自由基的高灵敏度在线探测.  相似文献   

2.
氮氧化物是大气中一种重要的痕量气体,影响大气的氧化性,危害人和动物的生理健康、导致光化学烟雾、灰霾、酸沉降等环境问题。近年来随着我国经济的迅速发展,能源消耗量的不断增加,氮氧化物的排放量居高不下,因此研究氮氧化物在大气中的含量及其化学性质具有非常重要的意义。氮氧化物(NO_x)的探测方式非常多样,但总活性氮氧化物(NO_y)的测量方式一直以来以催化转化化学发光法(CL)为主,本文介绍了一种热解双通道腔衰荡光谱技术(TD-CRDS)同步测量大气中NO_2和NO_y浓度的方法。优化了热解装置的性妮,确定了NO_2的有效吸收截面,分析了系统可能存在的干扰(H_2O、乙二醛、 NH_3、 N_2O等),探讨了系统的探测限(NO_2腔:8.72×10~8 molecules·cm~(-3); NO_y腔:9.71×10~8 molecules·cm~(-3))及误差(NO_2的测量误差:5%, NO_y的测量误差:12%)。另外,为了验证系统的性能,将CRDS与长光程差分吸收光谱(LP-DOAS)同步测量了环境气体NO_2浓度,相关性系数r为0.960;与Model 42i-NO_y分析仪开展环境大气NO_y的对比测量,相关性系数r为0.968,均具有较好的一致性。在合肥科学岛综合楼顶楼开展了为期一周的外场观测,测量期间NO_2和NO_y的平均浓度分别为0.411×10~(12)和0.773×10~(12) molecules·cm~(-3),通过平均日变化图发现NO_2与NO_y浓度具有相似的变化趋势,一般于10:00开始下降, 15:00达到最低值。CRDS技术因其高灵敏度、高时间分辨率已成为一种新型简便地测量环境大气中总活性氮氧化物的方法。  相似文献   

3.
波长调制-直接吸收光谱(WM-DAS)同时具有直接吸收光谱(DAS)可测量吸收率函数和波长调制光谱(WMS)高信噪比的优点,本文首先采用WM-DAS光谱,在50 cm光程和室温低压下,CO分子近红外4300.7 cm-1谱线吸收率检测限低至4×10-7(200 s);然后结合120 m长光程Herriott池,在室温大气压下,吸收率函数拟合残差标准差达到5.1×10-5(1 s).最后利用长光程WM-DAS测量系统,对不同浓度(体积分数为0.44×10-6—9.6×10-6)CO进行了动态测量,并将其与腔衰荡光谱(CRDS)进行比较;实验结果表明:本文采用的长光程WM-DAS与CRDS方法测量结果相同,其中长光程WM-DAS系统CO浓度检测限低至0.9×10-9(200 s),系统简单且测量速度远快于CRDS.与此同时,利用建立的长光程WM-DAS测量系统连续监测1个月时间内大气痕量CO浓度及其变化趋势,测量结果与中国环境监测总站测量结题高度一致.  相似文献   

4.
大气中NO2的含量在10-9量级。研究了一种以发光二极管(LED)为光源的光纤耦合长光程差分吸收光谱(DOAS)系统,用于测量大气NO2。对比了四种不同类型和波段的蓝光LED,确定以中心波长451nm的CREE宝蓝LED为测量光源。在0.8km的测量光程、2min的测量时间分辨率的情况下,在445nm~465nm光谱反演波段内得到NO2的探测限为3.36×10-9。利用系统对大气NO2的浓度进行了一整天的连续观测,通过对吸收光谱的分析计算,反演出的大气NO2浓度在(7~31)×10-9之间变化。测量结果表明,将光纤耦合技术与LED光源的长光程DOAS系统相结合后,可实现大气NO2的高灵敏、高时间分辨率探测。  相似文献   

5.
本文应用基于二极管激光器的双路光腔衰荡光谱技术,分别对大气中NO_3和N_2O_5浓度进行监测.通过使用实验室标准样校正有效吸收腔长比R_L和系统的总损耗系数η,并获得了NO_3有效吸收截面.该装置在时间分辨率为1 s时,对NO_3的测量灵敏度达到1.1 pptv,N_2O_5被在线转换成NO_3,从而被另一路光腔衰荡光谱装置探测.利用该装置,对合肥市区冬季夜间大气中的NO_3,N_2O_5浓度进行了实时监测.通过对比一次大气快速清洁过程中氮氧化物、臭氧、PM_(2.5)等组分的浓度变化,讨论了大气环境下可能影响NO_3及N_2O_5浓度的因素.  相似文献   

6.
NH_3是大气二次细颗粒物的主要前驱物之一,NH_3浓度的准确测量对于大气环境监测和保护具有重要意义。近红外波段激光器的成本较低,但采用其测量NH_3时,普遍存在受环境中H_2O、CO_2气体干扰以及吸收光程较短等问题。为克服环境中H_2O、CO_2干扰气体的影响,筛选出中心波数为6521.97 cm~(-1)的吸收谱线,利用该谱线对大气环境中痕量NH_3的浓度进行测量。该谱线不受环境中CO_2吸收的影响,且在低压条件下与H_2O吸收谱线的重叠范围较小,通过多峰拟合可以准确提取出NH_3的光谱吸收率。基于分布反馈式激光器搭建了一套腔衰荡吸收光谱测量装置,在该装置中,衰荡光腔由一对反射率高达99.996%的高反镜构成,空腔衰荡时间约96μs,有效吸收光程可达1.6×10~4 m。利用该装置对大气环境中痕量NH_3的浓度进行测量,结果表明:该测量系统的探测灵敏度可以达到3.9×10~(-10)。  相似文献   

7.
基于通讯波段的分布式反馈半导体激光器(DFB),搭建了一套光腔衰荡光谱仪(CRDS)。衰荡光腔由一对反射率高于99.997%的高反镜组成,衰荡腔长约为130 cm,空腔衰荡时间约为150 μs。当光谱平均次数达到1 000次时,光谱仪灵敏度(最小可探测吸收系数)达到5×10-12 cm-1。利用热隔绝的方式稳定衰荡腔长,并使用衰荡光腔自身作为光学标准具,来标定光谱的频率:利用反馈式光谱扫描程序步进改变激光器频率,使之与衰荡腔的纵模频率逐一匹配,从而实现所测得光谱的自动标定。通过测量一氧化碳分子在1.565 μm附近的吸收光谱,测定气体中一氧化碳的含量。将光谱测量结果和标准样品中的一氧化碳含量进行对比,对装置的定量精度进行了检验,表明其对一氧化碳的探测极限达4 ppbv。利用该装置对实际大气中一氧化碳的含量进行了实时监测。  相似文献   

8.
腔衰荡光谱技术(CRDS)作为一种具有高灵敏度高光谱分辨率的检测方法已被广泛用于痕量气体检测。而目前基于CRDS痕量气体检测多针对单一气体进行测量或通过多个激光器产生的多光束进行多种组分气体浓度测量。利用DFB激光器波长可调谐特性,通过强弱吸收峰结合,使用单光束实现了多种温室气体的腔衰荡光谱技术同步检测。由于大气中水汽和二氧化碳浓度较高,为实现同一衰荡系统对三种温室气体的同步测量,在平衡吸收损耗的基础上,选取1 653~1 654 nm内甲烷的强吸收峰与水汽、二氧化碳的弱吸收峰进行测量。通过光谱叠加反演矩阵,分别得到甲烷、水汽、二氧化碳的浓度。在计算测量灵敏度过程中发现,通过去除衰荡过程初期的部分数据点(过滤区间),会对噪声等效吸收系数产生影响。多数情况下,在测量灵敏度计算方面,列文伯格-马夸尔特算法(L-M)会优于离散傅里叶变换法(DFT);但当衰荡曲线的单指数性下降时,上述结论不一定成立。搭建了一个低精细度(F≈6×103)衰荡腔对上述结论进行了实验验证。相较于用于测量温室气体浓度的高精细度衰荡腔(F≈1×105),低精细度衰荡腔的衰荡速率较快,衰荡曲线的单指数性明显低于高精细度衰荡腔。实验表明,在过滤区间长度较短时,采用DFT算法计算得到的噪声等效吸收系数会小于L-M算法得到的结果。当过滤区间长度增加时,L-M算法得到的结果优于DFT算法。在受过滤区间长度影响方面,DFT算法的波动性要明显小于L-M算法。根据Allan方差分析,在512次采样平均(约8 s)下的最小噪声等效吸收系数进行计算,该CRDS装置测量灵敏度为2.4×10-10 cm-1。在25 ℃标准大气压下,对应甲烷、水汽、二氧化碳的测量灵敏度分别为0.64 ppbv,3.5 ppmv和4.0 ppmv。基于该CRDS装置,通过单光束多波长测量方法,利用光谱叠加反演矩阵,测得大气中甲烷、水汽、二氧化碳浓度分别为2.018,3 654和526 ppmv;而采用经典CRDS单波长测量得到的甲烷、水汽、二氧化碳浓度分别为2.037,3 898和630 ppmv。通过与温控调节波长,逐点扫描得到的光谱吸收曲线进行对比,采用多波长测量得到气体浓度进行复合拟合的光谱曲线残差小于单波长测量得到气体浓度进行简单拟合的光谱曲线残差。  相似文献   

9.
针对传统腔衰荡光谱技术浓度获取率低,提出基于双重锁定的连续波腔衰荡吸收光谱技术.通过波长调制一次谐波信号将激光器的频率锁定到C_2H_2吸收线上,同时使用PDH锁频技术将衰荡腔锁定到激光器上,从而避免了测量过程中激光器的频率漂移和腔长的抖动,使测量结果更加精确;并且,由于双重锁定,单次衰荡事件的发生率,也就是浓度信息的获取率只受衰荡时间以及重新锁定时间限制,在本试验系统中采集速率可以达到30 k Hz,可以实现对气体浓度的快速测量.为了提高信噪比,采用Kalman滤波技术,对浓度信息进行实时处理,有效抑制了噪声,根据阿伦方差分析,探测灵敏度可以达到4×10~(-9)cm~(-1)(2 s平均).  相似文献   

10.
夜间大气NO3自由基的氧化能力相当于白天OH自由基,鉴于NO3自由基在大气反应过程中的关键作用,准确测量其浓度及研究其夜间大气化学过程具有重大意义。采用以二极管激光器为光源(中心波长为662nm,半高宽0.3nm),两块高反射率镜片(R≥99.998 5%)形成的腔体为光学共振腔,有效光程达到约20km的腔衰荡光谱系统(CRDS)对夜间大气NO3自由基进行测量,并且针对秋冬季交通繁忙区域夜间大气边界层NO3自由基化学过程进行研究。采用该系统于2014年10月29日—11月15日在北京市中国科学院大学校园开展了NO3自由基连续外场观测实验,观测期间NO3自由基浓度相对较低,最大浓度约为50pptv,平均值为10pptv。并结合NO2,NO和O3等相关辅助数据对测量结果进行分析,分析表明在观测期间NO3自由基产率为0.04~1.03pptv·s-1,平均寿命约为68s。并且近一步分析了观测期间大气NO3自由基损耗途径,探讨了不同湿度及颗粒物浓度对其损耗的影响。即观测期间当大气中RH≥60%,PM2.5浓度大部分大于60μg·m-3时,ln(τss(NO3))与ln(NO2)的相关性达到0.79,大气中NO3自由基损耗主要以间接为主;然而在RH≤40%,PM2.5浓度大部分小于60μg·m-3时,因测量点靠近国道受局地污染源影响,直接损耗较显著;当大气中40%RH60%时,直接损耗与间接损耗途径都存在且不可忽视。  相似文献   

11.
王春梅  李炯  龚天林  陈扬骎  杨晓华 《光学学报》2007,27(11):2087-2090
腔衰荡光谱技术(CRDS)不仅具有较高的测量灵敏度,还可对样品的绝对吸收进行测量。采用连续激光腔衰荡光谱技术,通过测量O2分子三重禁戒跃迁b1∑g X3∑g-(3,0)带RQ(5)谱线(波数17266.090 cm-1)处,极限真空及不同气压下的衰荡时间,利用逼近法得到空腔寿命为2.9174 ms,由此拟合获得其绝对吸收截面为1.4998(±0.0967)×10-26cm2,与先前的文献估计值一致。由空腔寿命获得的谐振腔高反镜的反射比为99.989(±0.001)%,较通常的测量方法更为精确,该实验条件下的等效吸收程长比几何程长增大了约9090倍。  相似文献   

12.
高灵敏的连续激光光腔衰荡光谱仪及其应用   总被引:1,自引:0,他引:1  
基于连续可调谐的钛宝石激光光源,建立了光腔衰荡光谱(CRDS)装置,实验表明,其不但具有10-4cm-1的光谱分辨率,测靖灵敏度也好于10-10·cm-1.通过对C2H2气体在12 696.4 cm-1附近的吸收光谱测量,验证了该装置的定量测量能力,并通过对混有痕量C2H2气体的氮气样品的光谱测量,表明该装置对C2H2...  相似文献   

13.
在405 nm处基于低功率蓝光二极管光声技术探测ppb量级NO_2浓度系统,获取了NO_2有效吸收截面,探讨了水蒸气等气体的测量干扰,通过频率扫描拟合得到了1.35 kHz的谐振频率.采用内部抛光的铝制圆柱空腔作为光声谐振腔(内径为8 mm,长为120 mm),系统优化了腔体、窗片和电源等影响因素,分析了降低本底噪声、提高信噪比的方法,噪声信号可降至0.02μV.设计了两级缓冲结构,显著抑制了流量噪声的影响,提高了系统的稳定性.系统的标定梯度曲线经过线性拟合后的斜率为0.016μV/ppb, R~2为0.998,在60 s平均时间下,系统NO_2探测限为3.67 ppb(3σ).为了证实系统的测量结果,将其与二极管激光腔衰荡光谱系统同步对比测量大气NO_2浓度,二者线性拟合后的斜率为0.94±0.009,截距为1.89±0.18,相关系数为0.87,一致性较好.实验结果表明,该系统实现了ppb量级NO_2浓度的低成本在线探测,可用于NO_2浓度外场的实时检测.  相似文献   

14.
在预混甲烷/空气燃烧的平面火焰炉上,采用脉冲式光腔衰荡光谱技术(cavity ring-down spectroscopy, CRDS)实现了对OH分子浓度的定量测量。根据光腔衰荡吸收光谱理论,选取OH的A2Σ+-X2Π(0,0)电子跃迁带中的P1(2)吸收谱线构搭建了一套激光波长在308.6 nm的脉冲CRDS实验装置。脉冲CRDS装置中的衰荡光腔是由一对反射率为99.7%的高反射镜组成且其衰荡腔的腔长为270 cm,并测量空腔(光腔中无火焰)的衰荡时间为2.33μs。通过理论分析影响浓度精确测量的实验参数,分别采用平面激光诱导荧光(planar laser induced fluorescence, PLIF)、相干反斯托克斯拉曼散射(coherent anti-stokes Raman scattering, CARS)和脉冲CRDS三种技术精确测量OH的有效吸收长度、高温火焰的温度和有效的光腔衰荡时间。当在平面火焰炉上燃烧预混的甲烷(1.1 L·min-1)和空气(15...  相似文献   

15.
采用高温热解五氧化二氮(N_2O_5)的方法,利用N_2O_5与NO_3自由基之间的热平衡关系,通过腔衰荡光谱技术测量N_2O_5及NO_3自由基的浓度。基于二氧化氮(NO_2)与N_2O_5之间平衡可逆,探讨加热温度及NO_2浓度变化对N_2O_5分解率的影响;考虑N_2O_5在测量系统中的损耗,经初步的量化分析得到进气效率为88%。通过Allan方差选取最佳积分时间,在外场测量条件下,优化系统的体积分数探测限为8.6×10-12;通过分析进气效率、吸收截面及N_2O_5不完全热解等不确定性因素,估算得到整体测量误差约为±10%。在合肥郊区进行夜间大气实际监测,测量期间N_2O_5的浓度变化范围在(0.035~1)×10-9之间,平均浓度为4.52×10-10。该技术为实现大气中N_2O_5及NO_3自由基的高灵敏度在线监测提供了有效途径。  相似文献   

16.
光腔衰荡光谱(CRDS)技术具有精度高、灵敏度高、线性动态范围大的优势,被广泛应用于环境大气碳和水循环监测、人体呼气监测、深海/海洋溶解气体监测等领域。本文简要介绍了CRDS的基本原理及其发展历程,梳理了近年来国内外研究机构在痕量气体及同位素探测上的应用研究进展,重点介绍了中国科学院安徽光学精密机械研究所在环境大气温室气体探测、青藏高原气体廓线探测和深海溶解气体及其同位素探测应用领域中的研究工作、目前已经取得的研究进展以及还存在的相关问题,最后展望了CRDS技术在痕量气体探测领域的应用前景和未来发展趋势。  相似文献   

17.
采用蓝色发光二极管(LED)作为非相干宽带腔增强吸收光谱技术(IBBCEAS)系统光源,测量了436~470nm波段内NO2样气的吸收,验证IBBCEAS的高探测灵敏度。通过氮气和氦气两者瑞利散射截面的差异标定了镜片在430~490nm波段内的反射率,并利用纯氧中氧气二聚体(O2-O2)在477nm处的吸收验证了镜片反射率标定的准确性。镜片反射率在461nm处最大且为0.99937,光学腔长度为73.5cm时的最大有效光程为1.17km。当光谱采集时间为20s时,NO2的探测灵敏度(1σ)达到了0.25×10-9。进行了开放光路下环境大气中NO2和O2-O2在454~486nm波段内的吸收测量,结果表明大气中气溶胶等颗粒物的Mie散射消光降低了IBBCEAS仪器的探测灵敏度(1.04×10-9)。大气中O2-O2的测量为IBBCEAS吸收光程的在线标定提供了一种可行的途径。  相似文献   

18.
非相干光宽带腔增强吸收光谱作为高灵敏检测技术,已成功应用于多种大气痕量气体浓度的测量。根据腔增强吸收光谱技术测量原理可知,若已知测量气体准确浓度,镜片反射率随波长的变化曲线、有效吸收长度、光学腔内有无测量气体吸收前后的光辐射变化,可测量出待测气体的吸收截面。SO_2由于a~3 B_1—X~1 A_1自旋禁阻跃迁,在345~420nm波段吸收截面较低(~10~(-22) cm2/molecule),其测量有一定难度,而准确的弱吸收截面对于卫星反演大气痕量气体浓度以及大气研究等方面均有重要意义。采用365nm LED光源的宽带腔增强吸收光谱实验装置测量357~385nm波段范围SO_2的弱吸收,获得该波段SO_2弱吸收截面,并与已公开发表的SO_2吸收截面进行对比,相关系数r为0.997 3,验证了非相干光宽带腔增强吸收光谱技术准确测量气体弱吸收截面的适用性。  相似文献   

19.
非相干宽带腔增强吸收光谱(IBBCEAS)技术凭借其高选择性、高灵敏度、高时空分辨率等优势而逐渐成为NO_3自由基的主要测量方法之一。然而其使用的光谱仪分辨率有限,不足以分辨水汽的精细吸收结构,导致水汽的吸收非线性,进而影响NO_3自由基浓度的准确反演。介绍了一种基于插值法获取水汽有效吸收截面的方法,并将其用于消除IBBCEAS装置中水汽吸收对NO_3自由基浓度反演的干扰。利用不同浓度的水汽吸收谱结合插值法获得了水汽的有效吸收截面,使用该有效吸收截面来反演不同浓度的水汽,反演结果与商用湿度计测量结果的线性相关系数为0.99789。在此基础上测量并拟合了不同水汽浓度下NO_3自由基和NO_2气体的吸收,在拟合残差上未发现水汽残余结构,水汽反演结果与商用湿度计测量值的线性相关系数为0.999。在30 s的积分时间内,NO_3自由基和NO_2的探测极限分别为5.8×10~(-12)和3.6×10~(-9)。将本装置应用于夜间大气中进行NO_3自由基和NO_2浓度的测量,测得NO_3自由基体积分数为18.4×10~(-12)~22.9×10~(-12),平均体积分数为20.2×10~(-12),NO_2体积分数为0.6×10~(-9)~16.0×10~(-9),平均体积分数为9.9×10~(-9)。实验结果表明:利用插值法获得的水汽的有效吸收截面能够有效消除水汽吸收对NO_3自由基浓度反演的干扰,提高NO_3自由基和NO_2气体浓度测量的准确度。  相似文献   

20.
高灵敏度调谐式连续波腔衰荡光谱技术   总被引:6,自引:0,他引:6  
建立了一套以分布反馈式(DFB)激光器为光源的高灵敏度连续波腔衰荡光谱测量系统,该系统利用DFB激光器的电流调谐特点使激光在衰荡腔内谐振,利用其电流调制的特点实现入射光的关断,进行衰荡测量.对标准具效应消除前后的系统进行了测试,结果表明,前后系统等噪声探测灵敏度分别为2.56×10-7cm"和1.27×10-8 cm-1.以衰荡腔的纵模间隔为扫描步长对6591.43 cm-1处N2O的氮气加宽线宽系数进行了测量,测量结果分别为0.0819 cm-1和0.0808 cm-1,对测量结果与HITRAN2004数据库中参数间的差别进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号