首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Current Applied Physics》2018,18(5):491-499
Mo films deposited by DC sputtering are widely used as back contact in CIGS and CZTS based thin film solar cells. However, there have been only a few studies on the deposition of Mo films by RF sputtering method. In this context, Mo films on SLG substrates were prepared as a function of deposition pressure and power by using RF magnetron sputtering method to contribute to this shortcoming. Mo films were deposited at 250 °C substrate temperature by using 20, 15, 10 mTorr Ar pressures at 120 W RF power and 10 mTorr Ar pressure at 100 W RF power. Structural, morphological and reflectivity properties of RF-sputtered Mo films were clarified by XRD, AFM, FE-SEM and UV–Vis measurements. In addition, due to sodium incorporation from SLG substrate to the absorber layer through Mo back contact layer is so essential in terms of improving the conversion efficiency values of CIGS and CZTS thin film solar cell devices, the effects of Na diffusion in the films were analyzed with SIMS depth profile. The electrical properties of the films such as mobility, carrier density and resistivity were determined by Hall Effect measurements. It was found that Mo films prepared at 120 W, 10 mtorr and 250 °C substrate temperature and then annealed at 500 °C for 30 min, had resistivity as low as 10−5 Ω cm, as well as higher amount of Na incorporation than other films.  相似文献   

2.
田晶  杨鑫  刘尚军  练晓娟  陈金伟  王瑞林 《物理学报》2013,62(11):116801-116801
采用直流磁控溅射工艺, 在一定条件下通过控制溅射时间, 在钠钙玻璃上制备了不同厚度的用于Cu(Inx, Ga1-x)Se2薄膜太阳电池背接触材料的Mo薄膜, 并利用X射线衍射 (XRD)、场发射扫描电子显微镜 (SEM)、四探针测试仪、台阶仪研究了厚度对溅射时间、薄膜微结构、电学性能及力学性能的交互影响. Mo薄膜的厚度与溅射时间呈线性递增关系; 随厚度的增大, Mo薄膜 (110) 和 (211) 面峰强均逐渐增大, 择优生长从(110)方向逐渐向 (211)方向转变, 方块电阻值只随 (110) 方向上的生长而急剧减小直到一特定值约2 Ω/⇑, 电导率随薄膜的 (110) 择优取向程度的降低而线性减小直到一特定值约0.96×10-4 Ω·cm; Mo薄膜内部是一种多孔的长形簇状颗粒和颗粒间隙交织的结构, 并处于拉应力态, 其内部应变随薄膜厚度的增大而减小. 关键词: Mo薄膜 CIGS背接触 厚度 微结构  相似文献   

3.
李微  赵彦民  刘兴江  敖建平  孙云 《中国物理 B》2011,20(6):68102-068102
Mo thin films are deposited on soda lime glass (SLG) substrates using DC magnetron sputtering. The Mo film thicknesses are varied from 0.08 μm to 1.5 μm to gain a better understanding of the growth process of the film. The residual stresses and the structural properties of these films are investigated, with attention paid particularly to the film thickness dependence of these properties. Residual stress decreases and yields a typical tensile-to-compressive stress transition with the increase of film thickness at the first stages of film growth. The stress tends to be stable with the further increase of film thickness. Using the Mo film with an optimum thickness of 1 μm as the back contact, the Cu(InGa)Se2 solar cell can reach a conversion efficiency of 13.15%.  相似文献   

4.
In this paper, we reported the effect of the power and the working pressure on the molybdenum (Mo) films deposited using an in-line direct current (DC) magnetron sputtering system. The electrical and the structural properties of Mo film were improved by increasing DC power from 1 to 3 kW. On the other side, the resistivity of the Mo films became higher with the increasing working pressure. However, the adhesion property was improved when the working pressure was higher. In this work, in order to obtain an optimal Mo film as a back metal contact of Cu(In,Ga)Se2 (CIGS) solar cells, a bilayer Mo film was formed through the different film structures depending on the working pressure. The first layer was formed at a high pressure of 12 mTorr for a better adhesion and the second layer was formed at a low pressure of 3 mTorr for a lower resistivity.  相似文献   

5.
In this paper we study the electro-optical behavior and the application of indium–tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO–AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO–AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075×10?4 Ω?cm when the thickness of the AZO buffer layer was 12 nm. The ITO–AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased.  相似文献   

6.
Xiufang Yang 《中国物理 B》2022,31(9):98401-098401
The silicon heterojunction (SHJ) solar cell has long been considered as one of the most promising candidates for the next-generation PV market. Transition metal oxides (TMOs) show good carrier selectivity when combined with c-Si solar cells. This has led to the rapid demonstration of the remarkable potential of TMOs (especially MoOx) with high work function to replace the p-type a-Si:H emitting layer. MoOx can induce a strong inversion layer on the interface of n-type c-Si, which is beneficial to the extraction and conduction of holes. In this paper, the radio-frequency (RF) magnetron sputtering is used to deposit MoOx films. The optical, electrical and structural properties of MoOx films are measured and analyzed, with focus on the inherent compositions and work function. Then the MoOx films are applied into SHJ solar cells. When the MoOx works as a buffer layer between ITO/p-a-Si:H interface in the reference SHJ solar cell, a conversion efficiency of 19.1% can be obtained. When the MoOx is used as a hole transport layer (HTL), the device indicates a desirable conversion efficiency of 17.5%. To the best of our knowledge, this current efficiency is the highest one for the MoOx film as HTL by RF sputtering.  相似文献   

7.
 实验采用直流磁控溅射沉积技术在不同溅射功率下制备Mo膜,研究了不同溅射功率下Mo膜的沉积速率、表面形貌及晶型结构,并对其晶粒尺寸和应力进行了研究。利用原子力显微镜观察样品的表面形貌发现随着溅射功率的增加,薄膜表面粗糙度逐渐增大。X射线衍射分析表明薄膜呈立方多晶结构,晶粒尺寸为14.1~17.9 nm;应力先随溅射功率的增大而增大,在40 W时达到最大值(2.383 GPa),后随溅射功率的增大有所减小。  相似文献   

8.
在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、550 C温度条件下进行退火得到Cu2ZnSnS4吸收层.分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌.结果表明,退火后薄膜结晶质量良好,表面形貌致密.用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104cm 1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求.用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.  相似文献   

9.
ABSTRACT

ZnTe (Zinc Telluride) is a potential semiconducting material for many optoelectronic devices like solar cells and back contact material for CdTe-based solar cells. In the present study, ZnTe thin films were prepared by thermal evaporation technique and then irradiated with 120?MeV Si9+ ions at different fluences. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Visible spectroscopy techniques. XRD study confirms increased crystallinity and grain growth for post-irradiated ZnTe thin films for fluences, up to 1?×?1011 ions cm?2. However, the grain size and crystallinity decreased for higher fluence-exposed samples. SEM images confirm the observed structural properties. Modification of the surface morphology of the film due to the ion irradiation with different fluences is studied. Optical band gap of film is decreased from 2.31?eV (pristine) to 2.17?eV after irradiation of Si9+ ions.  相似文献   

10.
A dc magnetic sputtering process is applied to growth of a Mo back. contact layer onto the flexible polyimide (PI) and rigid soda-lime glass (SLC) substrates. The structural and electrical properties of the Mo layer coated on the two kinds of substrates are investigated by x-ray diffraction (XRD) and Hall effect measurements. The results show that the Mo layer on SLG indicate more better crystal quality and lower resistivity than that on the PI sheets. In contrast to the SLG substrate, the resistivity of the Mo layer on PI is increased by the vacuum annealing process at the substrate temperature of 450℃ under Se atmosphere, which is attributed to the cracked Mo layer induced by the mismatch of the coefficient of thermal expansion between PI and Mo material. The Cu(In,Ga)Se2 (CIGS) solar cells based on the PI and SLO substrates show the best conversion efficiencies of 8.16% and 10.98% (active area, 0.2cm^2), respectively. The cell efficiency of flexible CIGS solar cells on PI is limited by its relatively lower fill factor caused by the Mo back contact.  相似文献   

11.
采用射频磁控溅射法,在玻璃基片上制备了ZnO:Al(AZO)透明导电薄膜。用X射线衍射(XRD)仪、紫外-可见分光光度计、方块电阻测试仪和台阶仪对不同溅射功率下Al掺杂ZnO薄膜的结晶、光学、电学性能、沉积速率以及热稳定性进行了研究。研究结果表明:不同溅射功率下沉积的AZO薄膜具有六角纤锌矿结构,均呈c轴择优取向;(002)衍射峰强和薄膜的结晶度随溅射功率的提高逐渐增强;随溅射功率的提高,AZO薄膜的透射率有所下降,但在可见光(380~780nm)范围内平均透射率仍80%;薄膜的方块电阻随溅射功率的增加逐渐减小;功率为160~200W时,薄膜的热稳定性最好,升温前后方块电阻变化率为13%。  相似文献   

12.
采用衬底加热溅射铜锌锡硫(CZTS)四元化合物单靶制备CZTS薄膜,并研究原位退火对制备薄膜的影响.结果表明:在溅射结束后快速升温并保持一段时间,所得到的样品相比于未原位退火的CZTS薄膜结晶质量更好,且表面更平整致密;原位退火后的CZTS薄膜太阳电池性能参数也相应地有所提升,其开路电压(V_(OC))为575 mV,短路电流密度(J_(SC))为8.32 mA/cm~2,光电转换效率达到1.82%.  相似文献   

13.
Transparent and conducting indium tin oxide (ITO) thin films were deposited on soda lime glass substrates by RF plasma magnetron sputtering at room temperature. The effect of thickness (100, 200 and 300?nm) on the physical (structural, optical, electrical) properties of ITO thin films was investigated systematically. It is observed that with an increase in thickness, the X-ray diffraction data indicate polycrystalline films with grain orientations predominantly along (222) and (400) directions; the average grain size increases from 10 to 30?nm; the optical band gap increases from 3.68 to 3.73?eV and the transmission decrease from 80% to 70% . Four-point probes show a low resistivity (2.4×10?5?Ω?cm) values for film with a thickness 300?nm. Present work shows that the ITO is a promising transparent conductive oxide material for the solar cell application.  相似文献   

14.
Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.  相似文献   

15.
The SmCo-based films with different underlayers were deposited on Si substrates at 650 °C by magnetron sputtering process. Effect of different underlayers on the crystal structure and magnetic properties were investigated. The results show that the Al, Cu, and Ag underlayers can not make positive contributions on the crystal structure and magnetic properties. This is very different for the films with Mo and Cr underlayers, which exhibit well preferred orientation growth and improved magnetic properties. Especially, large intrinsic coercivity of 3.52 kOe and maximum energy product of 6.31 MGOe are observed for the films with Mo underlayers, which are found to be suitable for use in developed micro-magnetic devices from the high temperature aging results.  相似文献   

16.
In recent years, substantial scientific attention has been focused on renewable energy resources, which utilize natural resources for the production of electrical energy. Chalcopyrite semiconductors are used as one of the alternatives, Cu(In,Ga)Se2 (CIGS) and CuInS2 (CIS) are used for the fabrication of solar cells. These materials possess various properties Viz. ideal band gap (1.5?eV), high optical absorption, low light degradation, high radiation resistance, etc., hence they are suitable in the fabrication of solar cells. In contrast to other chalcopyrates, CuInS2 is nontoxic, low-cost and easy to prepare by simple deposition techniques. Several impurities were doped to CuInS2 bulks, to control conduction and also to obtain low resistivity. In this context, the structural, morphological and optical properties are reported for cobalt-doped CuInS2 (CIS2) thin films prepared by electro-deposition technique at room temperature. In the present study, we have used different cobalt concentration in the range of 0–5?wt.%. Doping of cobalt does not lead to the formation of any secondary phase, either in the form of metallic clusters or impurity complexes. However, with increase in cobalt concentration a decrease in the optical band gap, from 2.10 to 1.53?eV, is observed. In addition, implantation of cobalt in the CIS2 gave changes in structural and surface properties of the thin films obtained. These thin films are also subjected to elemental analysis using EDAX.  相似文献   

17.
提高CdTe太阳电池转换效率的有效途径之一是适当减薄CdS窗口层,减薄了的CdS层会严重影响电池性能,解决方法是在窗口层和透明导电膜之间加一层高阻本征SnO2薄膜。采用反应磁控溅射制备了具有高阻抗的本征SnO2薄膜,并对其进行了后处理,利用XRD,XPS等方法研究了退火前后薄膜的结构,成分及表面化学状态的变化。结果表明:经N2/O2=4:1气氛550℃(0.5h)退火后,样品由非晶态转变为四方相结构的多晶薄膜,具有(110)择优取向;XPS分析表明退火后薄膜的氧含量增加、O(1s)峰向低能方向移动,SnO被氧化成SnO2,使得薄膜的透过率增大,退火后的本征SnO2高阻膜非常适合作为过渡层应用于CdTe太阳电池中。  相似文献   

18.
We have investigated the deposition of 91% ZrO2 − 9% Y2O3 thin films by a variety of sputtering techniques for the application as electrolytes in thin film solid oxide fuel cells. The deposition by RF sputtering was accomplished by using an oxide target of the desired composition. The deposition rate in these initial tests was limited to 0.5 μm/hr and the morphology of the film was substantially modified by deposition rate and substrate temperature. Using DC magnetron sputtering we deposited metallic films from a metallic target with the desired chemical composition. We introduced oxygen into the sputtering chamber to reactively deposit the desired 91% ZrO2 − 9% Y2O3 thin films; however, we encountered problems with target oxidation and growth rate reproducibility. We subsequently demonstrated that controlled oxidation of the metallic films could result in adhering, non porous yttria stabilized zirconia films. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

19.
The Cu(In, Ga)Se2 (CIGS) thin films were deposited on bare glass and DC sputtered preferential oriented Mo-coated glass by RF sputtering from a single quaternary target. The structural and morphological properties of the films were characterized by X-ray diffraction (XRD), Raman spectroscope, energy dispersive X-ray spectrometer (EDS) and atomic force microscope (AFM). Preferred orientation of the Mo back contact was tuned between (110) and (211) plane by controlling the thickness. All the deposited CIGS thin films show (112) preferred oriented chalcopyrite structures. The films prepared on Mo-coated glass show higher quality crystallinity, better stoichiometry composition and more smooth surface morphology. Especially, the film on (211) oriented Mo-coated glass with the best integrated performance is expected to be a candidate absorber for high-efficiency CIGS solar cell device.  相似文献   

20.
S/Mo ratio has a crucial effect on the tribological properties of MoS2-Ti composite films. The deposition parameters as such bias voltage and working pressure play a dominant role on the change of this ratio value. To determine the effect of working pressure and bias voltage on S/Mo ratio, MoS2-Ti composite films were deposited on glass wafers by pulsed-dc magnetron sputtering (PMS). The deposition process was performed for nine different test conditions at various levels of target current, working pressure, and substrate voltage using the Taguchi L9(34) experimental method. It was observed that the chemical composition of MoS2-Ti composite films was significantly affected by sputtering parameters. It was also observed that S/Mo ratio decreased as the bias voltage increased at a constant working pressure and S/Mo ratio increased with increasing working pressure at a constant bias voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号